Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 194(7): 489, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676599

RESUMEN

Water quality sampling is a key element in tracking water quality monitoring objectives. However, frequencies adapted by different agencies might not be sufficient to provide an accurate indication of water quality status. In this study, data from low- and high-resolution water quality datasets were analyzed to determine the extent to which monitoring objectives could be achieved with different sampling frequencies, with a view to providing recommendations and best practices for water quality monitoring frequency in places with limited resources with which to implement a high-frequency monitoring plan. Water quality data from two watersheds (Maumee River and Raisin River) located in the Western Lake Erie Basin (WLEB) were used since these watersheds have consistent records over substantial periods of time, and the water quality data available have a high resolution (at least daily). The water quality constituents analyzed included suspended solids (SS), total phosphorus (TP), soluble reactive phosphorus (SRP), and nitrate + nitrite (NO2+3). Sources of pollutants for watersheds located in the WLEB include contributions from point sources like discharges from sewage treatment plants and non-point sources such as agricultural and urban storm runoff. Weekly, bi-weekly, monthly, and seasonal datasets were created from the original datasets, following different sampling rules based on the day of the week, week of the month, and month of the year. The resulting datasets were then compared to the original dataset to determine how the sampling frequency would affect the results obtained in a water quality assessment when different monitoring objectives are considered. Results indicated that constituents easily transported by water (such as sediments and nutrients) require more than 50 samples/year to provide a small error (< 10%) with a confidence interval of 95%. Monthly and seasonal sampling were found appropriate to report a stream's prevailing water quality status and statistical properties. However, these resolutions might not be sufficient to capture long-term trends, in which case bi-weekly samples would be preferable. Limitations of low-resolution sampling frequency could be overcome by including rainfall events and random sampling during specific time windows as part of the monitoring plan.


Asunto(s)
Contaminantes Químicos del Agua , Calidad del Agua , Monitoreo del Ambiente/métodos , Lagos , Fósforo/análisis , Ríos , Contaminantes Químicos del Agua/análisis
2.
Sci Total Environ ; 688: 1236-1251, 2019 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-31726554

RESUMEN

Studies assessing the impact of subsurface drains on hydrology and nutrient yield in a changing climate are limited, specifically for Western Lake Erie Basin. This study aimed to evaluate the impact of changing climate on hydro-climatology and nutrient loadings in agricultural subsurface-drained areas on a watershed in northeastern Indiana. The study was conducted using a hydrologic model - the Soil and Water Assessment Tool (SWAT) - under two different greenhouse gas emission scenarios (RCP 4.5 and RCP 8.5). Based on analysis, annual subsurface drain flow totals could increase by 70% with respect to the baseline by the end of the 21st century. Surface runoff could increase by 10 to 140% and changes are expected to be greater under RCP 8.5. Soluble phosphorus yield over the basin in a year via subsurface drains could decrease by 30 to 60% under either emission scenarios. Annual total soluble phosphorus yield (soluble phosphorus loading to stream) from subsurface drains and surface runoff could vary from 0.041 to 0.058 kg/ha under RCP 4.5 and 0.035 to 0.064 kg/ha under RCP 8.5 by the end of the 21st century while the values from the baseline model were 0.051 kg/ha. This was attributable to the fact that future climate could have a greater increase in surface runoff than subsurface drain flow based on analysis of the different climate scenarios. Outputs from individual climate model data rather than ensembles provided a band of influence of watershed responses, while outputs from different timelines provided details for evaluating management practice suitability with respect to anticipated differences in climate. Results provide valuable information for stakeholders and policy makers for planning management practices to protect water quality.

3.
Sci Total Environ ; 665: 69-79, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30772580

RESUMEN

Evaluation of the effectiveness of green infrastructure (GI) practices on improving site hydrology and water quality and their associated cost could provide valuable information for decision makers when creating development/re-development strategies. In this study, a watershed scale rainfall-runoff model (the Long-Term Hydrologic Impact Analysis - Low Impact Development model, the L-THIA-LID 2.1 model) was enhanced to improve its simulation of urban water management practices including GI practices. The enhanced model (L-THIA-LID 2.2) is capable of: simulating in more detail impervious surfaces including sidewalks, roads, driveways, and parking lots; conducting cost calculations for converting these impervious surfaces to porous pavements; and, selecting suitable areas for bioretention in the study area. The effectiveness of GI practices on improving hydrology and water quality in a combined sewer overflow urban watershed-the Darst Sewershed in the City of Peoria, IL-was examined in eleven simulation scenarios using 8 practices. The total cost and the cost effectiveness for each scenario considering a 20-year practice lifetime were calculated. Results showed: combined implementation of GI practices performed better than applying individual practices alone; adoption levels and combinations of GI practices could potentially reduce runoff volume by 0.2-23.5%, TSS by 0.18-30.8%, TN by 0.2-27.9%, and TP by 0.2 to 28.1%; adding more practices did not necessarily achieve substantial runoff and pollutant reductions based on site characteristics; the most cost-effective scenario out of eleven considered had an associated cost of $9.21 to achieve 1 m3 runoff reduction per year and $119 to achieve 1 kg TSS reduction per year assuming residents' cooperation in implementing GI practices on their properties; adoption of GI practices on all possible areas could potentially achieve the greatest runoff and pollutant reduction, but would not be the most cost-effective option. This enhanced model can be applied to different locations to support assessing the beneficial uses of GI practices.

4.
Sci Total Environ ; 601-602: 580-593, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575835

RESUMEN

Best management practices (BMPs) have been widely used to address hydrology and water quality issues in both agricultural and urban areas. Increasing numbers of BMPs have been studied in research projects and implemented in watershed management projects, but a gap remains in quantifying their effectiveness through time. In this paper, we review the current knowledge about BMP efficiencies, which indicates that most empirical studies have focused on short-term efficiencies, while few have explored long-term efficiencies. Most simulation efforts that consider BMPs assume constant performance irrespective of ages of the practices, generally based on anticipated maintenance activities or the expected performance over the life of the BMP(s). However, efficiencies of BMPs likely change over time irrespective of maintenance due to factors such as degradation of structures and accumulation of pollutants. Generally, the impacts of BMPs implemented in water quality protection programs at watershed levels have not been as rapid or large as expected, possibly due to overly high expectations for practice long-term efficiency, with BMPs even being sources of pollutants under some conditions and during some time periods. The review of available datasets reveals that current data are limited regarding both short-term and long-term BMP efficiency. Based on this review, this paper provides suggestions regarding needs and opportunities. Existing practice efficiency data need to be compiled. New data on BMP efficiencies that consider important factors, such as maintenance activities, also need to be collected. Then, the existing and new data need to be analyzed. Further research is needed to create a framework, as well as modeling approaches built on the framework, to simulate changes in BMP efficiencies with time. The research community needs to work together in addressing these needs and opportunities, which will assist decision makers in formulating better decisions regarding BMP implementation in watershed management projects.

6.
Water Sci Technol ; 66(5): 1096-102, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22797240

RESUMEN

There is increasing concern regarding spread and proliferation of pathogenic microorganisms in watersheds and their impacts on water quality. In agricultural and rural watersheds fecal coliform occurrence, an indicator of pathogenic contamination, is often thought to be a result of land applications of animal waste. This study used the Hydrologic Simulation Program Fortran (HSPF) along with the Bacterial Indicator Tool to model fecal coliform transport in a coastal watershed with a view to identifying contaminant sources and key contributing areas. Results indicated that the highest levels of fecal coliform contamination (often exceeding the 400 counts/100 ml standard for the area) emanated from areas with and without livestock operations, and from largely forested areas, indicating that livestock operations were not the determining source of fecal coliform as suggested in previous studies. This study found HSPF to be an effective tool for identifying key coliform contributing areas in coastal watersheds.


Asunto(s)
Simulación por Computador , Enterobacteriaceae/aislamiento & purificación , Heces/microbiología , Modelos Teóricos , Microbiología del Agua , Florida , Humanos , Factores de Tiempo , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...