Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Fungal Biol ; 127(12): 1534-1543, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38097327

RESUMEN

The thermal treatment the sugarcane juice undergoes during its processing alters the medium's chemical composition through the so-called Maillard reactions and its products, which can affect the alcohol-producing yeast's physiology in steps following the processing. This study aims to describe and characterize the reactivity of the primary amino acids present in sugarcane with sucrose, as well as demonstrate the physiological effects of the reaction's products on the yeast Saccharomyces cerevisiae. The main amino acids in sugarcane (glutamine, asparagine, and aspartic acid) were chosen to be reacted with sucrose under similar conditions to the industrial sugarcane processing (pH 5 and temperature 100-120 °C). The physiological effect of Maillard and caramelization reaction on the S. cerevisiae CEN.PK-122 and PE-2 strains were tested in microplate experiments using a modified mineral media containing both the reacted and unreacted amino acid-sucrose systems and four modified synthetic molasses media. The results have shown that the presence of any amino acids drastically increases product formation. Furthermore, among the amino acids, aspartic acid was the most reactive. Meanwhile, asparagine and glutamine had similar results. In S. cerevisiae physiology, aspartic acid had the most significant effect on culture growth by reducing the maximum specific growth rate and optical density. The increase in the Maillard product concentration for synthetic molasses also evidenced the inhibitory effect on yeast growth compared to media in the absence of these products. We conclude that this initial investigation clarifies the inhibitory effect of the Maillard products on yeast physiology.


Asunto(s)
Ácido Aspártico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Ácido Aspártico/metabolismo , Glutamina/metabolismo , Asparagina/metabolismo , Fermentación , Sacarosa/metabolismo , Aminoácidos/metabolismo , Productos Finales de Glicación Avanzada/metabolismo
2.
Polymers (Basel) ; 15(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37514409

RESUMEN

Despite being widely used in tailings treatment, polyacrylamide continues to face performance challenges. In this study, two commercial polyacrylamides with different molecular weights were used to flocculate iron ore tailings and their performance was compared with two polymers designed to treat oil sand tailings: poly(vinylbenzyl)trimethylammonium chloride and partially hydrolyzed poly(methyl acrylate) grafted onto ethylene-propylene-diene copolymer backbones. The polyacrylamide with the highest molecular weight performed better than the one with the lowest molecular weight, but its efficiency was still considerably lower than what would be desired for good solid-liquid separation. The new polymer flocculants performed better than the commercially available polyacrylamides but retained high amounts of water in the sediments. This comparison shows that polymers other than polyacrylamide may be used to treat iron ore tailings.

3.
Sci Rep ; 13(1): 10567, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386049

RESUMEN

Fully defined laboratory media have the advantage of allowing for reproducibility and comparability of results among different laboratories, as well as being suitable for the investigation of how different individual components affect microbial or process performance. We developed a fully defined medium that mimics sugarcane molasses, a frequently used medium in different industrial processes where yeast is cultivated. The medium, named 2SMol, builds upon a previously published semi-defined formulation and is conveniently prepared from some stock solutions: C-source, organic N, inorganic N, organic acids, trace elements, vitamins, Mg + K, and Ca. We validated the 2SMol recipe in a scaled-down sugarcane biorefinery model, comparing the physiology of Saccharomyces cerevisiae in different actual molasses-based media. We demonstrate the flexibility of the medium by investigating the effect of nitrogen availability on the ethanol yield during fermentation. Here we present in detail the development of a fully defined synthetic molasses medium and the physiology of yeast strains in this medium compared to industrial molasses. This tailor-made medium was able to satisfactorily reproduce the physiology of S. cerevisiae in industrial molasses. Thus, we hope the 2SMol formulation will be valuable to researchers both in academia and industry to obtain new insights and developments in industrial yeast biotechnology.


Asunto(s)
Saccharum , Levadura Seca , Saccharomyces cerevisiae , Melaza , Reproducibilidad de los Resultados , Medios de Cultivo , Grano Comestible
4.
Environ Sci Pollut Res Int ; 30(7): 19111-19119, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36223012

RESUMEN

In this work, we studied the effect of CO2 in the feed stream of the TRM process performance of nickel supported on LaFeO3 perovskite for hydrogen production compared to the POM reaction. The perovskite and nickel supported on LaFeO3 were synthesized and characterized by thermogravimetric analysis (TGA/DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), and programmed reduction temperature (TPR). The catalytic tests were carried out in temperatures varying from 700 to 800 °C with feed flow of 350 cm3/min and 200 cm3/min for TRM and POM, respectively. The hydrogen selectivity for the tri-reforming was 78%, while for the partial oxidation reaction, only 55% H2 at 700 °C. Results showed that the hydrogen selectivity for the Ni/LaFeO3 catalyst is significantly higher for the tri-reforming process, suggesting that CO2 enhanced the hydrogen selectivity compared to the partial oxidation of methane. Analyses by Raman spectroscopy and thermogravimetric calculations showed structural modifications of the catalysts after the reaction. The Raman spectrum showed segregated NiO and Fe3O4 and low carbon formation at 700 °C. The proposed mechanism suggests methane and oxygen adsorption, lattice oxygen and CO2 on surface active sites, and vacancies for both reactions.


Asunto(s)
Dióxido de Carbono , Metano , Dióxido de Carbono/química , Metano/química , Níquel/química , Hidrógeno/química , Oxígeno/química
5.
Carbohydr Polym ; 254: 117278, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33357854

RESUMEN

A new model is proposed for the kinetics of the heterogeneous deacetylation of chitin/chitosan. This new model is able to represent the process over much broader ranges than the other kinetic models reported in the literature. The unreacted shrinking core model was modified with the inclusion of increasing diffusional effects as the reaction progresses, causing the rate to slow down and preventing the degree of deacetylation reaching 100 %, even in the presence of excess NaOH. The model was validated with data collected in experiments with different NaOH concentrations and temperatures. The proposed model was able to represent the experimental data correctly over the entire experiment span, resulting in a model with proven predictive ability, in contrast to existing kinetic models that have been applied in a piecewise fashion over a rather limited time range of the process. The proposed model represents an improvement in the understanding of the deacetylation process.

6.
Bioresour Technol ; 320(Pt B): 124379, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33189041

RESUMEN

Poly-ß-hydroxybutyrate (PHB) is a biodegradable biopolymer that may replace fossil-based plastics reducing its negative environmental impact. One highly sustainable strategy to produce these biopolymers is the exploitation of photosynthetic microorganisms that use sunlight and CO2 to produce biomass and subsequently, PHB. Exploring environmental biological diversity is a powerful tool to find resilient microorganisms potentially exploitable to produce bioproducts. In this work, a cyanobacterium (Synechocystis sp.) isolated from a contaminated area close to an important industrial complex was shown to produce PHB under different culture conditions. Carbon, nutrients supply and light intensity impact on biomass and PHB productivity were assessed, showing that the highest yield of PHB achieved was 241 mg L-1 (31%dcw) under high light intensity. Remarkably this condition not only stimulated PHB accumulation by 70% compared to other conditions tested but also high cellular duplication rate, maximizing the potential of this strain for PHB production.


Asunto(s)
Synechocystis , Carbono , Hidroxibutiratos , Poliésteres
7.
Biotechnol Biofuels ; 13: 178, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117432

RESUMEN

BACKGROUND: The use of thermotolerant yeast strains can improve the efficiency of ethanol fermentation, allowing fermentation to occur at temperatures higher than 40 °C. This characteristic could benefit traditional bio-ethanol production and allow simultaneous saccharification and fermentation (SSF) of starch or lignocellulosic biomass. RESULTS: We identified and characterized the physiology of a new thermotolerant strain (LBGA-01) able to ferment at 40 °C, which is more resistant to stressors as sucrose, furfural and ethanol than CAT-1 industrial strain. Furthermore, this strain showed similar CAT-1 resistance to acetic acid and lactic acid, and it was also able to change the pattern of genes involved in sucrose assimilation (SUC2 and AGT1). Genes related to the production of proteins involved in secondary products of fermentation were also differentially regulated at 40 °C, with reduced expression of genes involved in the formation of glycerol (GPD2), acetate (ALD6 and ALD4), and acetyl-coenzyme A synthetase 2 (ACS2). Fermentation tests using chemostats showed that LBGA-01 had an excellent performance in ethanol production in high temperature. CONCLUSION: The thermotolerant LBGA-01 strain modulates the production of key genes, changing metabolic pathways during high-temperature fermentation, and increasing its resistance to high concentration of ethanol, sugar, lactic acid, acetic acid, and furfural. Results indicate that this strain can be used to improve first- and second-generation ethanol production in Brazil.

8.
Adv Appl Microbiol ; 109: 61-119, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31677647

RESUMEN

Yeasts have a long-standing relationship with humankind that has widened in recent years to encompass production of diverse foods, beverages, fuels and medicines. Here, key advances in the field of yeast fermentation applied to alcohol production, which represents the predominant product of industrial biotechnology, will be presented. More specifically, we have selected industries focused in producing bioethanol, beer and wine. In these bioprocesses, yeasts from the genus Saccharomyces are still the main players, with Saccharomyces cerevisiae recognized as the preeminent industrial ethanologen. However, the growing demand for new products has opened the door to diverse yeasts, including non-Saccharomyces strains. Furthermore, the development of synthetic media that successfully simulate industrial fermentation medium will be discussed along with a general overview of yeast fermentation modeling.


Asunto(s)
Cerveza/análisis , Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Vino/análisis , Cerveza/microbiología , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Fermentación , Saccharomyces cerevisiae/genética , Vino/microbiología
9.
Langmuir ; 35(35): 11512-11523, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31404489

RESUMEN

The functionalization of Laponite RD platelets with different cationic, anionic, and nonionic homo- and copolymers synthesized by reversible addition-fragmentation chain transfer (RAFT) has been investigated. The effective interaction of the macromolecular RAFT agents (macroRAFTs) with the inorganic particles is known to be of crucial importance for the successful coating of minerals with polymers via RAFT-mediated emulsion polymerization to produce polymer-encapsulated inorganic particles. The macroRAFT agents synthesized in the present work contain carefully selected reinitiating R groups, which bear either ionizable tertiary amine or quaternary ammonium moieties (from 2-(dimethylamino)ethyl methacrylate, DMAEMA), negatively charged acrylic acid (AA) repeat units, or neutral polyethylene glycol (PEG) side chains, and are capable of interacting with Laponite via different adsorption mechanisms. The equilibrium adsorption of these RAFT (co)polymers was investigated by the plotting of adsorption isotherms, and either L-type or H-type curves were obtained. The hydrophobicity of the macroRAFT was shown to promote adsorption, as did the pending configuration of the PEG block. Charge repulsion between AA and the negatively charged surface of Laponite at pH 7.5, on the other hand, was prejudicial for adsorption, while the strong electrostatic interaction between the cationic DMAEMA molecules and the Laponite surface led to high-affinity-type curves.

10.
J Environ Manage ; 237: 585-594, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30826640

RESUMEN

Hydrogen (H2) is considered a clean valuable energy source and its worldwide demand has increased in recent years. The Water-Gas Shift (WGS) Reaction is one of the major routes for hydrogen production and uses different catalysts depending on the operating process conditions. A catalyst is usually composed of an active phase and a support for its dispersion. There are currently an increasing number of researches on catalytic field focusing on transition metals nanoparticles supported on different compounds. In order to predict optimal catalyst compositions for the WGS reaction, Artificial Neural Networks (ANNs) were used to build a model from the literature catalytic data. A three-layer feedforward neural network was employed with active phase composition and support type as some of the input variables, and Carbon Monoxide (CO) conversion as output variable. The insertion of properties such as surface area, calcination temperature and time allowed predicting the reaction performance based on intrinsic catalyst variables not commonly used in phenomenological kinetic models. Also, unlike previous studies, a detailed sensitivity analysis was carried out to observe useful trends. An important outcome of this work is the proposition of ceria-supported catalysts for the WGS reaction that present larger surface areas, with Ru, Ni or Cu as active phases conducted at moderate temperatures (≈300 °C) and with reasonable space velocities (2000-6000 h-1). In addition, it was possible to predict the most relevant variables for the process: the temperature and the surface area. Thus, the results show the power of ANNs for predicting better catalysts and conditions for this important process in the environmental field.


Asunto(s)
Hidrógeno , Agua , Monóxido de Carbono , Catálisis , Temperatura
11.
Langmuir ; 33(38): 9598-9608, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28795812

RESUMEN

Recently, there has been significant interest in the use of the reversible addition-fragmentation chain-transfer (RAFT) technique to generate a variety of organic/inorganic colloidal composite particles in aqueous dispersed media using the so-called macroRAFT-assisted encapsulating emulsion polymerization (REEP) strategy. In this process, special attention should be paid to the adsorption of the macromolecular RAFT (macroRAFT) agent onto the inorganic particles, as it determines the final particle morphology and can also influence latex stability. In this work, different amphipathic macroRAFT agents were synthesized by RAFT, and their adsorption onto commercial Montmorillonite clay Cloisite Na+ (MMT) was studied by means of adsorption isotherms. Three types of macroRAFT agents were considered: a nonionic one based on poly(ethylene glycol) methyl ether acrylate (PEGA) and n-butyl acrylate (BA), anionic ones, including a block copolymer and random copolymers, based on acrylic acid (AA), BA and PEGA, and cationic ones based on 2-(dimethylamino)ethyl methacrylate (DMAEMA), BA and PEGA. Six adsorption isotherm models (Langmuir, Freundlich, Tempkin, Redlich-Peterson, Sips, and Brunauer-Emmett-Teller) were adjusted to the experimental isotherms. The nonionic macroRAFT agent formed a monolayer on the clay surface with a maximum adsorption capacity of 400 mg g-1 at pH 8, as determined from the Sips adsorption model. Adsorption of the AA-based macroRAFT agents onto MMT was moderate at alkaline pH due to electrostatic repulsions, but increased with decreasing pH. The DMAEMA-based macroRAFT agents displayed a much stronger interaction with the oppositely charged MMT surface at acidic pH due to electrostatic interactions, and the concentration of adsorbed macroRAFT agent reached values as high as 800 mg g-1. The BET model fitted the experimental data relatively well indicating multilayer adsorption promoted by the presence of the hydrophobic BA units. In addition, the cationic macroRAFT agents afforded stable MMT/macroRAFT agent complexes as evaluated by dynamic light scattering and zeta potential analyses.

12.
Ultrason Sonochem ; 39: 645-653, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28732989

RESUMEN

In the present work, high speed homogenizer has been used for the intensification of biodiesel synthesis from soybean oil and waste cooking oil (WCO) used as a sustainable feedstock. High acid value waste cooking oil (27mg of KOH/g of oil) was first esterified with methanol using sulphuric acid as catalyst in two stages to bring the acid value to desired value of 1.5mg of KOH/g of oil. Transesterification of soybean oil (directly due to lower acid value) and esterified waste cooking oil was performed in the presence of heterogeneous catalyst (CaO) for the production of biodiesel. Various experiments were performed for understanding the effect of operating parameters viz. molar ratio, catalyst loading, reaction temperature and speed of rotation of the homogenizer. For soybean oil, the maximum biodiesel yield as 84% was obtained with catalyst loading of 3wt% and molar ratio of oil to methanol of 1:10 at 50°C with 12,000rpm as the speed of rotation in 30min. Similarly biodiesel yield of 88% was obtained from waste cooking oil under identical operating conditions except for the catalyst loading which was 1wt%. Significant increase in the rate of biodiesel production with yields from soybean oil as 84% (in 30min) and from WCO as 88% (30min) was established due to the use of high speed homogenizer as compared to the conventional stirring method (requiring 2-3h for obtaining similar biodiesel yield). The observed intensification was attributed to the turbulence caused at microscale and generation of fine emulsions due to the cavitational effects. Overall it can be concluded from this study that high speed homogenizer can be used as an alternate cavitating device to efficiently produce biodiesel in the presence of heterogeneous catalysts.

13.
Bioresour Technol ; 198: 717-24, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26447558

RESUMEN

The gasification of microalgae Chlorella vulgaris under an atmosphere of argon and water vapor was investigated by thermogravimetric analysis. The data were interpreted by using conventional isoconversional methods and also by the independent parallel reaction (IPR) model, in which the degradation is considered to happen individually to each pseudo-component of biomass (lipid, carbohydrate and protein). The IPR model allows obtaining the kinetic parameters of the degradation reaction of each component. Three main stages were observed during the gasification process and the differential thermogravimetric curve was satisfactorily fitted by the IPR model considering three pseudocomponents. The comparison of the activation energy values obtained by the methods and those found in the literature for other microalgae was satisfactory. Quantification of reaction products was performed using online gas chromatography. The major products detected were H2, CO and CH4, indicating the potential for producing fuel gas and syngas from microalgae.


Asunto(s)
Biocombustibles , Chlorella vulgaris/química , Microalgas/química , Biomasa , Cromatografía de Gases , Cinética , Modelos Químicos , Termogravimetría
14.
Bioprocess Biosyst Eng ; 38(3): 469-79, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25234511

RESUMEN

Experiments of continuous alcoholic fermentation of sugarcane juice with flocculating yeast recycle were conducted in a system of two 0.22-L tower bioreactors in series, operated at a range of dilution rates (D 1 = D 2 = 0.27-0.95 h(-1)), constant recycle ratio (α = F R /F = 4.0) and a sugar concentration in the feed stream (S 0) around 150 g/L. The data obtained in these experimental conditions were used to adjust the parameters of a mathematical model previously developed for the single-stage process. This model considers each of the tower bioreactors as a perfectly mixed continuous reactor and the kinetics of cell growth and product formation takes into account the limitation by substrate and the inhibition by ethanol and biomass, as well as the substrate consumption for cellular maintenance. The model predictions agreed satisfactorily with the measurements taken in both stages of the cascade. The major differences with respect to the kinetic parameters previously estimated for a single-stage system were observed for the maximum specific growth rate, for the inhibition constants of cell growth and for the specific rate of substrate consumption for cell maintenance. Mathematical models were validated and used to simulate alternative operating conditions as well as to analyze the performance of the two-stage process against that of the single-stage process.


Asunto(s)
Reactores Biológicos , Etanol/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/crecimiento & desarrollo , Fermentación/fisiología , Floculación
15.
Mater Sci Eng C Mater Biol Appl ; 33(1): 85-90, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25428047

RESUMEN

This work has investigated the in vitro calcification of bovine pericardium (BP) treated with chitosan (C), silk fibroin (SF) and electron beam irradiation after its endothelization in vitro. For this purpose, freeze-dried BP membranes treated with mixtures of C and SF (1:3, 1:1 and 3:1) and then irradiated by electron beam irradiation were seeded with human umbilical vein endothelial cells (HUVEC) in vitro. After 3 weeks of cultivation these membranes were submitted to in vitro calcification tests using simulated body fluid as the calcifying agent. Control membranes were also studied (without endothelial cells exposure). The results have shown that the membrane compatibility with HUVECs in vitro prevent such biomaterial from calcifying, showing a potential application in biomaterial area, such as cardiac valves and repair patches.


Asunto(s)
Calcificación Fisiológica/efectos de los fármacos , Quitosano/farmacología , Electrones , Endotelio/fisiología , Fibroínas/farmacología , Pericardio/fisiología , Animales , Bovinos , Endotelio/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Pericardio/efectos de los fármacos , Espectrometría por Rayos X , Espectrometría Raman
16.
Photochem Photobiol ; 85(3): 686-92, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19067950

RESUMEN

The photodegradation of the herbicide clomazone in the presence of S(2)O(8) (2-) or of humic substances of different origin was investigated. A value of (9.4 +/- 0.4) x 10(8) m(-1) s(-1) was measured for the bimolecular rate constant for the reaction of sulfate radicals with clomazone in flash-photolysis experiments. Steady state photolysis of peroxydisulfate, leading to the formation of the sulfate radicals, in the presence of clomazone was shown to be an efficient photodegradation method of the herbicide. This is a relevant result regarding the in situ chemical oxidation procedures involving peroxydisulfate as the oxidant. The main reaction products are 2-chlorobenzylalcohol and 2-chlorobenzaldehyde. The degradation kinetics of clomazone was also studied under steady state conditions induced by photolysis of Aldrich humic acid or a vermicompost extract (VCE). The results indicate that singlet oxygen is the main species responsible for clomazone degradation. The quantum yield of O(2)(a(1)Delta(g)) generation (lambda = 400 nm) for the VCE in D(2)O, Phi(Delta) = (1.3 +/- 0.1) x 10(-3), was determined by measuring the O(2)(a(1)Delta(g)) phosphorescence at 1270 nm. The value of the overall quenching constant of O(2)(a(1)Delta(g)) by clomazone was found to be (5.7 +/- 0.3) x 10(7) m(-1) s(-1) in D(2)O. The bimolecular rate constant for the reaction of clomazone with singlet oxygen was k(r) = (5.4 +/- 0.1) x 10(7) m(-1) s(-1), which means that the quenching process is mainly reactive.


Asunto(s)
Herbicidas/química , Isoxazoles/química , Modelos Químicos , Oxazolidinonas/química , Fotoquímica , Cinética
17.
Anal Chim Acta ; 595(1-2): 257-65, 2007 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-17606008

RESUMEN

Emulsion and suspension polymerizations are important industrial processes for polymer production. The end-user properties of polymers depend strongly on how the polymerization reactions proceed in time (i.e. a batch or semicontinuous, rate of reagents feeding, etc.). In other words, these reactions are process dependent, which makes the successful process control a key point to ensure high-quality products. In several process control strategies the on-line monitoring of reaction performance is required. Due to the multiphase nature of the emulsion and suspension processes, there is a lack of sensors to perform successful on-line monitoring. Near infrared and Raman spectroscopies have been pointed out as useful approaches for monitoring emulsion and suspension polymerizations and several applications have been described. In such instance, the chemometric approach on relating near infrared and Raman spectra to polymer properties is widely used and has proven to be useful. Nevertheless, the multiphase nature of emulsion and suspension polymerizations also represents a challenge for the chemometric approach based on multivariate calibration models and demands the development of new methods. In this work, a set novel results is presented from the monitoring of 15 batch emulsion reactions that show the chemometric challenge to be faced on development of new methods for successful monitoring of processes taken under dispersed medium. In order to discuss these results, several chemometric approaches were revised. It is shown that Raman and NIR spectroscopic techniques are suitable for on-line monitoring of monomer concentration and polymer content during the polymerizations, as well as medium heterogeneity properties, i.e. average particle size. It is also shown that Hotteling and Q statistics, widely used in chemometrics, might fail in monitoring these reactions, while an approach based on principal curves is able to overcome such restriction.

18.
Biotechnol Bioeng ; 86(4): 414-24, 2004 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15112294

RESUMEN

A morphologically structured model is proposed to describe trends in biomass growth, substrate consumption, and antitumoral retamycin production during batch and fed-batch cultivations of Streptomyces olindensis. Filamentous biomass is structured into three morphological compartments (apical, subapical, and hyphal), and the production of retamycin, a secondary metabolite, is assumed to take place in the subapical cell compartment. Model accounts for the effect of glucose as well as complex nitrogen source on both the biomass growth and retamycin production. Laboratory data from bench-scale batch and fed-batch fermentations were used to estimate some model parameters by nonlinear regression. The predictive capability of the model was then tested for additional fed-batch and continuous experiments not used in the previous fitting procedure. The model predictions show fair agreement to the experimental data. The proposed model can be useful for further studies on process optimization and control.


Asunto(s)
Antraciclinas/metabolismo , Microbiología Industrial/métodos , Modelos Teóricos , Streptomyces/metabolismo , Antineoplásicos/metabolismo , División Celular/fisiología , Medios de Cultivo , Fermentación , Glucosa/metabolismo , Microbiología Industrial/instrumentación , Matemática , Modelos Biológicos , Nitrógeno/metabolismo , Reproducibilidad de los Resultados , Streptomyces/crecimiento & desarrollo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA