Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38399442

RESUMEN

Melanoma is the principal cause of death in skin cancer due to its ability to invade and cause metastasis. Hypoxia, which characterises the tumour microenvironment (TME), plays an important role in melanoma development, as cancer cells can adapt and acquire a more aggressive phenotype. Carbonic anhydrases (CA) activity, involved in pH regulation, is related to melanoma cell migration and invasion. Furthermore, the Hedgehog (Hh) pathway, already known for its role in physiological processes, is a pivotal character in cancer cell growth and can represent a promising pharmacological target. In this study, we targeted Hh pathway components with cyclopamine, glabrescione B and C22 in order to observe their effect on carbonic anhydrase XII (CAXII) expression especially under hypoxia. We then performed a migration and invasion assay on two melanoma cell lines (SK-MEL-28 and A375) where Smoothened, the upstream protein involved in Hh regulation, and GLI1, the main transcription factor that determines Hh pathway activation, were chemically inhibited. Data suggest the existence of a relationship between CAXII, hypoxia and the Hedgehog pathway demonstrating that the chemical inhibition of the Hh pathway and CAXII reduction resulted in melanoma migration and invasion impairment especially under hypoxia. As in recent years drug resistance to small molecules has arisen, the development of new chemical compounds is crucial. The multitarget Hh inhibitor C22 proved to be effective without signs of cytotoxicity and, for this reason, it can represent a promising compound for future studies, with the aim to reach a better melanoma disease management.

2.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047096

RESUMEN

Cutaneous melanoma is a highly aggressive skin cancer, with poor prognosis. The tumor microenvironment is characterized by areas of hypoxia. Carbonic anhydrase IX (CA-IX) is a marker of tumor hypoxia and its expression is regulated by hypoxia-inducible factor-1 (HIF-1). CA-IX has been found to be highly expressed in invasive melanomas. In this study, we investigated the effects of hypoxia on the release of small extracellular vesicles (sEVs) in two melanoma in vitro models. We demonstrated that melanoma cells release sEVs under both normoxic and hypoxic conditions, but only hypoxia-induced sEVs express CA-IX mRNA and protein. Moreover, we optimized an ELISA assay to provide evidence for CA-IX protein expression on the membranes of the sEVs. These CA-IX-positive sEVs may be exploited as potential biomarkers for liquid biopsy.


Asunto(s)
Anhidrasas Carbónicas , Melanoma , Neoplasias Cutáneas , Humanos , Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/metabolismo , Anhidrasa Carbónica IX/genética , Anhidrasas Carbónicas/metabolismo , Hipoxia , Melanoma/genética , Microambiente Tumoral , Melanoma Cutáneo Maligno
3.
Cancers (Basel) ; 14(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36230699

RESUMEN

BACKGROUND: Malignant melanoma is the leading cause of death among skin cancer patients due to its tendency to metastasize. Alterations at the molecular level are often evident, which is why melanoma biology has garnered increasing interest. The hedgehog (Hh) pathway, which is essential for embryonic development, is aberrantly re-activated in melanoma and may represent a promising therapeutic target. In addition, carbonic anhydrase XII (CAXII) represents a poor prognostic target for hypoxic tumors, such as melanoma, and is involved in cell migration. Thus, we decided to investigate whether and how the Hh pathway and CAXII may control melanoma cell migration and invasiveness. METHODS: The migratory and invasive capabilities of SK-MEL-28 and A375 cell lines, either un-transfected or transiently transfected with Smoothened (SMO), GLI1, or CAXII siRNA, were studied under normoxic or hypoxic conditions. RESULTS: For the first time, we showed that SMO and GLI1 silencing resulted in the downregulation of CAXII expression in both moderately and highly invasive melanoma cells under hypoxia. The Hh pathway as well as CAXII inhibition by siRNA resulted in impaired malignant melanoma migration and invasion. CONCLUSION: Our results suggest that CAXII and the Hh pathway are relevant in melanoma invasion and may be novel and promising therapeutical targets for melanoma clinical management.

4.
Cells ; 11(10)2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35626732

RESUMEN

Hypoxia is a component of both physiological and pathological conditions, including inflammation, solid tumors, and lymphoid tissues, where O2 demand is not balanced by O2 supply. During their lifespan, dendritic cells (DCs) are exposed to different pO2 and activate different adaptive responses, including autophagy, to preserve their viability and functions. Autophagy plays multiple roles in DC physiology. Very recently, we demonstrated that hypoxia shapes autophagy in DCs upon their differentiation state. Here, we proposed a role for PI3Ks, and especially class III PI3K/Vps34, that could be relevant in hypoxia-induced autophagy, in either immature or mature DCs. Hypoxia inhibited mTOR phosphorylation and activated a pro-autophagic program. By using different pharmacological inhibitors, we demonstrated that hypoxia-induced autophagy was mediated by PI3Ks, especially by Vps34. Furthermore, Vps34 expression was enhanced by LPS, a TLR4 ligand, along with the promotion of autophagy under hypoxia. The Vps34 inhibitor, SAR405, abolished hypoxia-induced autophagy, inhibited pro-survival signaling and viability, and increased the expression of proinflammatory cytokines. Our results underlined the impact of autophagy in the maintenance of DC homeostasis at both cell survival and inflammatory response levels, therefore, contributing to a better understanding of the significance of autophagy in DC physiology and pathology.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas Clase III , Autofagia/fisiología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Células Dendríticas/metabolismo , Humanos , Hipoxia , Transducción de Señal
5.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299186

RESUMEN

Hypoxia is a key component of the tumor microenvironment (TME) and promotes not only tumor growth and metastasis, but also negatively affects infiltrating immune cells by impairing host immunity. Dendritic cells (DCs) are the most potent antigen-presenting cells and their biology is weakened in the TME in many ways, including the modulation of their viability. RNASET2 belongs to the T2 family of extracellular ribonucleases and, besides its nuclease activity, it exerts many additional functions. Indeed, RNASET2 is involved in several human pathologies, including cancer, and it is functionally relevant in the TME. RNASET2 functions are not restricted to cancer cells and its expression could be relevant also in other cell types which are important players in the TME, including DCs. Therefore, this study aimed to unravel the effect of hypoxia (2% O2) on the expression of RNASET2 in DCs. Here, we showed that hypoxia enhanced the expression and secretion of RNASET2 in human monocyte-derived DCs. This paralleled the HIF-1α accumulation and HIF-dependent and -independent signaling, which are associated with DCs' survival/autophagy/apoptosis. RNASET2 expression, under hypoxia, was regulated by the PI3K/AKT pathway and was almost completely abolished by TLR4 ligand, LPS. Taken together, these results highlight how hypoxia- dependent and -independent pathways shape RNASET2 expression in DCs, with new perspectives on its implication for TME and, therefore, in anti-tumor immunity.


Asunto(s)
Hipoxia de la Célula/fisiología , Células Dendríticas/metabolismo , Monocitos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ribonucleasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Apoptosis/fisiología , Autofagia/fisiología , Células Cultivadas , Células Dendríticas/inmunología , Células Dendríticas/patología , Humanos , Monocitos/inmunología , Monocitos/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ribonucleasas/biosíntesis , Ribonucleasas/inmunología , Transducción de Señal , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Supresoras de Tumor/inmunología
6.
Front Immunol ; 11: 573646, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329536

RESUMEN

During their lifespan, dendritic cells (DCs) are exposed to different pO2 levels that affect their differentiation and functions. Autophagy is one of the adaptive responses to hypoxia with important implications for cell survival. While the autophagic machinery in DCs was shown to impact signaling of TLRs, its regulation by the MD-2/TLR4 ligand LPS is still unclear. The aim of this study was to evaluate whether LPS can induce autophagy in DCs exposed to either aerobic or hypoxic conditions. Using human monocyte-derived DCs and the combination of immunofluorescence confocal analysis, measure of mitochondrial membrane potential, Western blotting, and RT-qPCR, we showed that the ability of LPS to modulate autophagy was strictly dependent upon pO2 levels. Indeed, LPS inhibited autophagy in aerobic conditions whereas the autophagic process was induced in a hypoxic environment. Under hypoxia, LPS treatment caused a significant increase of functional lysosomes, LC3B and Atg protein upregulation, and reduction of SQSTM1/p62 protein levels. This selective regulation was accompanied by activation of signalling pathways and expression of cytokines typically associated with DC survival. Bafilomycin A1 and chloroquine, which are recognized as autophagic inhibitors, confirmed the induction of autophagy by LPS under hypoxia and its impact on DC survival. In conclusion, our results show that autophagy represents one of the mechanisms by which the activation of the MD-2/TLR4 ligand LPS promotes DC survival under hypoxic conditions.


Asunto(s)
Autofagia/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Lipopolisacáridos/farmacología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Hipoxia de la Célula , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/patología , Humanos , Ligandos , Antígeno 96 de los Linfocitos/agonistas , Transducción de Señal , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/metabolismo
7.
Cancers (Basel) ; 12(10)2020 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-33080820

RESUMEN

BACKGROUND: Intratumoral hypoxia contributes to cancer progression and poor prognosis. Carbonic anhydrases IX (CAIX) and XII (CAXII) play pivotal roles in tumor cell adaptation and survival, as aberrant Hedgehog (Hh) pathway does. In malignant melanoma both features have been investigated for years, but they have not been correlated before and/or identified as a potential pharmacological target. Here, for the first time, we demonstrated that malignant melanoma cell motility was impaired by targeting CAXII via either CAs inhibitors or through the inhibition of the Hh pathway. METHODS: We tested cell motility in three melanoma cell lines (WM-35, SK-MEL28, and A375), with different invasiveness capabilities. To this end we performed a scratch assay in the presence of the smoothened (SMO) antagonist cyclopamine (cyclo) or CAs inhibitors under normoxia or hypoxia. Then, we analyzed the invasiveness potential in the cell lines which were more affected by cyclo and CAs inhibitors (SK-MEL28 and A375). Western blot was employed to assess the expression of the hypoxia inducible factor 1α, CAXII, and FAK phosphorylation. Immunofluorescence staining was performed to verify the blockade of CAXII expression. RESULTS: Hh inhibition reduced melanoma cell migration and CAXII expression under both normoxic and hypoxic conditions. Interestingly, basal CAXII expression was higher in the two more aggressive melanoma cell lines. Finally, a direct CAXII blockade impaired melanoma cell migration and invasion under hypoxia. This was associated with a decrease of FAK phosphorylation and metalloprotease activities. CONCLUSIONS: CAXII may be used as a target for melanoma treatment not only through its direct inhibition, but also through Hh blockade.

8.
Cells ; 9(3)2020 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-32235738

RESUMEN

A type lamins are fundamental components of the nuclear lamina. Changes in lamin A expression correlate with malignant transformation in several cancers. However, the role of lamin A has not been explored in osteosarcoma (OS). Here, we wanted to investigate the role of lamin A in normal osteoblasts (OBs) and OS cells. Thus, we studied the expression of lamin A/C in OS cells compared to OBs and evaluated the effects of lamin A overexpression in OS cell lines. We show that, while lamin A expression increases during osteoblast differentiation, all examined OS cell lines express lower lamin A levels relative to differentiated OBs. The condition of low LMNA expression confers to OS cells a significant increase in migration potential, while overexpression of lamin A reduces migration ability of OS cells. Moreover, overexpression of unprocessable prelamin A also reduces cell migration. In agreement with the latter finding, OS cells which accumulate the highest prelamin A levels upon inhibition of lamin A maturation by statins, had significantly reduced migration ability. Importantly, OS cells subjected to statin treatment underwent apoptotic cell death in a RAS-independent, lamin A-dependent manner. Our results show that pro-apoptotic effects of statins and statin inhibitory effect on OS cell migration are comparable to those obtained by prelamin A accumulation and further suggest that modulation of lamin A expression and post-translational processing can be a tool to decrease migration potential in OS cells.


Asunto(s)
Movimiento Celular , Lamina Tipo A/metabolismo , Osteosarcoma/metabolismo , Osteosarcoma/patología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Lovastatina/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...