Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2776: 269-287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502511

RESUMEN

Genome modifications in microalgae have emerged as a crucial and indispensable tool for research in fundamental and applied biology. In particular, CRISPR/Cas9 has gained significant recognition as a highly effective method for genome engineering in these photosynthetic organisms, enabling the targeted induction of mutations in specific regions of the genome. Here, we present a comprehensive protocol for generating knock-out mutants in the model diatom Phaeodactylum tricornutum using CRISPR/Cas9 by both biolistic transformation and bacterial conjugation. Our protocol outlines the step-by-step procedures and experimental conditions required to achieve successful genome editing, including the design and construction of guide RNAs, the delivery of CRISPR/Cas9 components into the algae cells, and the selection of the generated knockout mutants. Through the implementation of this protocol, researchers can harness the potential of CRISPR/Cas9 in P. tricornutum to advance the understanding of diatom biology and explore their potential applications in various fields.


Asunto(s)
Diatomeas , Edición Génica , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Proteínas Nucleares/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Proteínas de Cloroplastos/genética , ARN Guía de Sistemas CRISPR-Cas
2.
Cell Rep Methods ; 3(9): 100568, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37751690

RESUMEN

Photoautotrophs' environmental responses have been extensively studied at the organism and ecosystem level. However, less is known about their photosynthesis at the single-cell level. This information is needed to understand photosynthetic acclimation processes, as light changes as it penetrates cells, layers of cells, or organs. Furthermore, cells within the same tissue may behave differently, being at different developmental/physiological stages. Here, we describe an approach for single-cell and subcellular photophysiology based on the customization of confocal microscopy to assess chlorophyll fluorescence quenching by the saturation pulse method. We exploit this setup to (1) reassess the specialization of photosynthetic activities in developing tissues of non-vascular plants; (2) identify a specific subpopulation of phytoplankton cells in marine photosymbiosis, which consolidate energetic connections with their hosts; and (3) examine the link between light penetration and photoprotection responses inside the different tissues that constitute a plant leaf anatomy.


Asunto(s)
Ecosistema , Fotosíntesis , Frecuencia Cardíaca , Microscopía Confocal , Fitoplancton , Animales
3.
New Phytol ; 234(2): 578-591, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35092009

RESUMEN

Diatoms are successful phytoplankton clades able to acclimate to changing environmental conditions, including e.g. variable light intensity. Diatoms are outstanding at dissipating light energy exceeding the maximum photosynthetic electron transfer (PET) capacity via the nonphotochemical quenching (NPQ) process. While the molecular effectors of NPQ as well as the involvement of the proton motive force (PMF) in its regulation are known, the regulators of the PET/PMF relationship remain unidentified in diatoms. We generated mutants of the H+ /K+ antiporter KEA3 in the model diatom Phaeodactylum tricornutum. Loss of KEA3 activity affects the PET/PMF coupling and NPQ responses at the onset of illumination, during transients and in steady-state conditions. Thus, this antiporter is a main regulator of the PET/PMF coupling. Consistent with this conclusion, a parsimonious model including only two free components, KEA3 and the diadinoxanthin de-epoxidase, describes most of the feedback loops between PET and NPQ. This simple regulatory system allows for efficient responses to fast (minutes) or slow (e.g. diel) changes in light environment, thanks to the presence of a regulatory calcium ion (Ca2+ )-binding domain in KEA3 modulating its activity. This circuit is likely tuned by the NPQ-effector proteins, LHCXs, providing diatoms with the required flexibility to thrive in different ocean provinces.


Asunto(s)
Diatomeas , Aclimatación , Diatomeas/metabolismo , Luz , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Protones
4.
Front Plant Sci ; 12: 628684, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113360

RESUMEN

Algae belonging to the Microchloropsis genus are promising organisms for biotech purposes, being able to accumulate large amounts of lipid reserves. These organisms adapt to different trophic conditions, thriving in strict photoautotrophic conditions, as well as in the concomitant presence of light plus reduced external carbon as energy sources (mixotrophy). In this work, we investigated the mixotrophic responses of Microchloropsis gaditana (formerly Nannochloropsis gaditana). Using the Biolog growth test, in which cells are loaded into multiwell plates coated with different organic compounds, we could not find a suitable substrate for Microchloropsis mixotrophy. By contrast, addition of the Lysogeny broth (LB) to the inorganic growth medium had a benefit on growth, enhancing respiratory activity at the expense of photosynthetic performances. To further dissect the role of respiration in Microchloropsis mixotrophy, we focused on the mitochondrial alternative oxidase (AOX), a protein involved in energy management in other algae prospering in mixotrophy. Knocking-out the AOX1 gene by transcription activator-like effector nuclease (TALE-N) led to the loss of capacity to implement growth upon addition of LB supporting the hypothesis that the effect of this medium was related to a provision of reduced carbon. We conclude that mixotrophic growth in Microchloropsis is dominated by respiratory rather than by photosynthetic energetic metabolism and discuss the possible reasons for this behavior in relationship with fatty acid breakdown via ß-oxidation in this oleaginous alga.

5.
Plant Physiol ; 181(4): 1449-1458, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31554701

RESUMEN

NADP(H) is an essential cofactor of multiple metabolic processes in all living organisms, and in plants, NADP(H) is required as the substrate of Ca2+-dependent NADPH oxidases, which catalyze a reactive oxygen species burst in response to various stimuli. While NADP+ production in plants has long been known to involve a calmodulin (CaM)/Ca2+-dependent NAD+ kinase, the nature of the enzyme catalyzing this activity has remained enigmatic, as has its role in plant physiology. Here, we used proteomic, biochemical, molecular, and in vivo analyses to identify an Arabidopsis (Arabidopsis thaliana) protein that catalyzes NADP+ production exclusively in the presence of CaM/Ca2+ This enzyme, which we named NAD kinase-CaM dependent (NADKc), has a CaM-binding peptide located in its N-terminal region and displays peculiar biochemical properties as well as different domain organization compared with known plant NAD+ kinases. In response to a pathogen elicitor, the activity of NADKc, which is associated with the mitochondrial periphery, contributes to an increase in the cellular NADP+ concentration and to the amplification of the elicitor-induced oxidative burst. Based on a phylogenetic analysis and enzymatic assays, we propose that the CaM/Ca2+-dependent NAD+ kinase activity found in photosynthetic organisms is carried out by NADKc-related proteins. Thus, NADKc represents the missing link between Ca2+ signaling, metabolism, and the oxidative burst.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Estallido Respiratorio , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Calcio/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Flagelina/metabolismo , Cinética , Mitocondrias/metabolismo , Modelos Biológicos , Péptidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fotosíntesis , Filogenia , Unión Proteica , Dominios Proteicos , Plantones/metabolismo
6.
FEBS J ; 286(11): 2118-2134, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30771275

RESUMEN

Alternative routes for the post-chorismate branch of the biosynthetic pathway leading to tyrosine exist, the 4-hydroxyphenylpyruvate or the arogenate route. The arogenate route involves the transamination of prephenate into arogenate. In a previous study, we found that, depending on the microorganisms possessing the arogenate route, three different aminotransferases evolved to perform prephenate transamination, that is, 1ß aspartate aminotransferase (1ß AAT), N-succinyl-l,l-diaminopimelate aminotransferase, and branched-chain aminotransferase. The present work aimed at identifying molecular determinant(s) of 1ß AAT prephenate aminotransferase (PAT) activity. To that purpose, we conducted X-ray crystal structure analysis of two PAT competent 1ß AAT from Arabidopsis thaliana and Rhizobium meliloti and one PAT incompetent 1ß AAT from R. meliloti. This structural analysis supported by site-directed mutagenesis, modeling, and molecular dynamics simulations allowed us to identify a molecular determinant of PAT activity in the flexible N-terminal loop of 1ß AAT. Our data reveal that a Lys/Arg/Gln residue in position 12 in the sequence (numbering according to Thermus thermophilus 1ß AAT), present only in PAT competent enzymes, could interact with the 4-hydroxyl group of the prephenate substrate, and thus may have a central role in the acquisition of PAT activity by 1ß AAT.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Aspartato Aminotransferasas/metabolismo , Ácidos Ciclohexanocarboxílicos/metabolismo , Ciclohexenos/metabolismo , Sinorhizobium meliloti/enzimología , Transaminasas/metabolismo , Tirosina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoácidos Dicarboxílicos/biosíntesis , Proteínas de Arabidopsis/química , Aspartato Aminotransferasas/química , Cloroplastos/enzimología , Secuencia Conservada , Cristalografía por Rayos X , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Especificidad por Sustrato , Thermus thermophilus/enzimología , Transaminasas/química , Tirosina/análogos & derivados , Tirosina/biosíntesis
7.
Methods Mol Biol ; 1829: 367-378, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29987734

RESUMEN

Genome modifications in microalgae are becoming a widespread and mandatory tool for research in both fundamental and applied biology. Among genome editing methods in these photosynthetic organisms, CRISPR/Cas9 offers a specific, powerful and efficient tool for genome engineering by inducing mutations in targeted regions of the genome. Here we described a protocol that allows the generation of knockout mutants by CRISPR/Cas9 in the diatom Phaeodactylum tricornutum using biolistic transformation.


Asunto(s)
Biolística/métodos , Sistemas CRISPR-Cas , Proteínas de Cloroplastos/genética , Diatomeas/genética , Mutación , Biolística/instrumentación , Núcleo Celular/genética , Edición Génica , Técnicas de Inactivación de Genes
8.
Front Plant Sci ; 8: 329, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28337214

RESUMEN

Enzymatic and non-enzymatic peroxidation of polyunsaturated fatty acids give rise to accumulation of aldehydes, ketones, and α,ß-unsaturated carbonyls of various lengths, known as oxylipins. Oxylipins with α,ß-unsaturated carbonyls are reactive electrophile species and are toxic. Cells have evolved several mechanisms to scavenge reactive electrophile oxylipins and decrease their reactivity such as by coupling with glutathione, or by reduction using NAD(P)H-dependent reductases and dehydrogenases of various substrate specificities. Plant cell chloroplasts produce reactive electrophile oxylipins named γ-ketols downstream of enzymatic lipid peroxidation. The chloroplast envelope quinone oxidoreductase homolog (ceQORH) from Arabidopsis thaliana was previously shown to reduce the reactive double bond of γ-ketols. In marked difference with its cytosolic homolog alkenal reductase (AtAER) that displays a high activity toward the ketodiene 13-oxo-9(Z),11(E)-octadecadienoic acid (13-KODE) and the ketotriene 13-oxo-9(Z), 11(E), 15(Z)-octadecatrienoic acid (13-KOTE), ceQORH binds, but does not reduce, 13-KODE and 13-KOTE. Crystal structures of apo-ceQORH and ceQORH bound to 13-KOTE or to NADP+ and 13-KOTE have been solved showing a large ligand binding site, also observed in the structure of the cytosolic alkenal/one reductase. Positioning of the α,ß-unsaturated carbonyl of 13-KOTE in ceQORH-NADP+-13-KOTE, far away from the NADP+ nicotinamide ring, provides a rational for the absence of activity with the ketodienes and ketotrienes. ceQORH is a monomeric enzyme in solution whereas other enzymes from the quinone oxidoreductase family are stable dimers and a structural explanation of this difference is proposed. A possible in vivo role of ketodienes and ketotrienes binding to ceQORH is also discussed.

9.
J Biol Chem ; 291(38): 20136-48, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27493208

RESUMEN

Copper is an essential transition metal for living organisms. In the plant model Arabidopsis thaliana, half of the copper content is localized in the chloroplast, and as a cofactor of plastocyanin, copper is essential for photosynthesis. Within the chloroplast, copper delivery to plastocyanin involves two transporters of the PIB-1-ATPases subfamily: HMA6 at the chloroplast envelope and HMA8 in the thylakoid membranes. Both proteins are high affinity copper transporters but share distinct enzymatic properties. In the present work, the comparison of 140 sequences of PIB-1-ATPases revealed a conserved region unusually rich in histidine and cysteine residues in the TMA-L1 region of eukaryotic chloroplast copper ATPases. To evaluate the role of these residues, we mutated them in HMA6 and HMA8. Mutants of interest were selected from phenotypic tests in yeast and produced in Lactococcus lactis for further biochemical characterizations using phosphorylation assays from ATP and Pi Combining functional and structural data, we highlight the importance of the cysteine and the first histidine of the CX3HX2H motif in the process of copper release from HMA6 and HMA8 and propose a copper pathway through the membrane domain of these transporters. Finally, our work suggests a more general role of the histidine residue in the transport of copper by PIB-1-ATPases.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Cobre/química , Proteínas de las Membranas de los Tilacoides/química , Tilacoides/enzimología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cobre/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de las Membranas de los Tilacoides/genética , Proteínas de las Membranas de los Tilacoides/metabolismo , Tilacoides/genética
10.
Plant J ; 87(6): 641-53, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27232113

RESUMEN

Growing pharmaceutical interest in benzylisoquinoline alkaloids (BIA) coupled with their chemical complexity make metabolic engineering of microbes to create alternative platforms of production an increasingly attractive proposition. However, precise knowledge of rate-limiting enzymes and negative feedback inhibition by end-products of BIA metabolism is of paramount importance for this emerging field of synthetic biology. In this work we report the structural characterization of (S)-norcoclaurine-6-O-methyltransferase (6OMT), a key rate-limiting step enzyme involved in the synthesis of reticuline, the final intermediate to be shared between the different end-products of BIA metabolism, such as morphine, papaverine, berberine and sanguinarine. Four different crystal structures of the enzyme from Thalictrum flavum (Tf 6OMT) were solved: the apoenzyme, the complex with S-adenosyl-l-homocysteine (SAH), the complexe with SAH and the substrate and the complex with SAH and a feedback inhibitor, sanguinarine. The Tf 6OMT structural study provides a molecular understanding of its substrate specificity, active site structure and reaction mechanism. This study also clarifies the inhibition of Tf 6OMT by previously suggested feedback inhibitors. It reveals its high and time-dependent sensitivity toward sanguinarine.


Asunto(s)
Metiltransferasas/química , Metiltransferasas/metabolismo , Thalictrum/enzimología , Benzofenantridinas/metabolismo , Benzofenantridinas/farmacología , Bencilisoquinolinas/metabolismo , Berberina/farmacología , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Escherichia coli/genética , Isoquinolinas/metabolismo , Isoquinolinas/farmacología , Metiltransferasas/antagonistas & inhibidores , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Conformación Proteica , Multimerización de Proteína , Thalictrum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...