Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569275

RESUMEN

The NF-κB-signaling pathway plays a crucial role in cancer progression, including muscle-derived cancers such as rhabdomyosarcoma or sarcoma. Several natural compounds have been studied for their ability to alter NF-κB signaling in these types of cancers. This review paper summarizes the current knowledge on the effects of natural compounds, including curcumin, resveratrol, quercetin, epigallocatechin-3-gallate, and berberine, on NF-κB signaling in muscle-derived cancers. These compounds have been shown to inhibit NF-κB signaling in rhabdomyosarcoma cells through various mechanisms, such as inhibiting the activation of the IKK complex and the NF-κB transcription factor. These findings suggest that natural compounds could be potential therapeutic agents for muscle-derived cancers. However, further research is needed to fully understand their mechanisms of action and potential clinical applications.


Asunto(s)
Curcumina , Rabdomiosarcoma , Humanos , FN-kappa B/metabolismo , Transducción de Señal , Curcumina/farmacología , Curcumina/uso terapéutico , Músculos/metabolismo
2.
Aging Cell ; 22(9): e13928, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37522798

RESUMEN

Inhibition of glycogen breakdown blocks memory formation in young animals, but it stimulates the maintenance of the long-term potentiation, a cellular mechanism of memory formation, in hippocampal slices of old animals. Here, we report that a 2-week treatment with glycogen phosphorylase inhibitor BAY U6751 alleviated memory deficits and stimulated neuroplasticity in old mice. Using the 2-Novel Object Recognition and Novel Object Location tests, we discovered that the prolonged intraperitoneal administration of BAY U6751 improved memory formation in old mice. This was accompanied by changes in morphology of dendritic spines in hippocampal neurons, and by "rejuvenation" of hippocampal proteome. In contrast, in young animals, inhibition of glycogen degradation impaired memory formation; however, as in old mice, it did not alter significantly the morphology and density of cortical dendritic spines. Our findings provide evidence that prolonged inhibition of glycogen phosphorolysis improves memory formation of old animals. This could lead to the development of new strategies for treatment of age-related memory deficits.


Asunto(s)
Glucógeno Fosforilasa , Hipocampo , Ratones , Animales , Hipocampo/metabolismo , Glucógeno Fosforilasa/metabolismo , Trastornos de la Memoria/metabolismo , Cognición , Glucógeno/metabolismo , Espinas Dendríticas/metabolismo
3.
Cells ; 12(11)2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37296581

RESUMEN

The "one protein, one function" paradigm, similar to the "one gene, one enzyme" hypothesis that dominated our thinking for a long time, has proven to be too simplistic [...].


Asunto(s)
Proteínas
4.
Cells ; 11(10)2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35626746

RESUMEN

Recently, we have shown that the physiological roles of a multifunctional protein fructose 1,6-bisphosphatase 2 (FBP2, also called muscle FBP) depend on the oligomeric state of the protein. Here, we present several lines of evidence that in HL-1 cardiomyocytes, a forced, chemically induced reduction in the FBP2 dimer-tetramer ratio that imitates AMP and NAD+ action and restricts FBP2-mitochondria interaction, results in an increase in Tau phosphorylation, augmentation of FBP2-Tau and FBP2-MAP1B interactions, disturbance of tubulin network, marked reduction in the speed of mitochondrial trafficking and increase in mitophagy. These results not only highlight the significance of oligomerization for the regulation of FBP2 physiological role in the cell, but they also demonstrate a novel, important cellular function of this multitasking protein-a function that might be crucial for processes that take place during physiological and pathological cardiac remodeling, and during the onset of diseases which are rooted in the destabilization of MT and/or mitochondrial network dynamics.


Asunto(s)
Mitocondrias , Miocitos Cardíacos , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitofagia , Miocitos Cardíacos/metabolismo , Tubulina (Proteína)/metabolismo
5.
Aging (Albany NY) ; 14(8): 3365-3386, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477123

RESUMEN

TP53 is a master regulator of many signaling and apoptotic pathways involved in: aging, cell cycle progression, gene regulation, growth, apoptosis, cellular senescence, DNA repair, drug resistance, malignant transformation, metastasis, and metabolism. Most pancreatic cancers are classified as pancreatic ductal adenocarcinomas (PDAC). The tumor suppressor gene TP53 is mutated frequently (50-75%) in PDAC. Different types of TP53 mutations have been observed including gain of function (GOF) point mutations and various deletions of the TP53 gene resulting in lack of the protein expression. Most PDACs have point mutations at the KRAS gene which result in constitutive activation of KRas and multiple downstream signaling pathways. It has been difficult to develop specific KRas inhibitors and/or methods that result in recovery of functional TP53 activity. To further elucidate the roles of TP53 in drug-resistance of pancreatic cancer cells, we introduced wild-type (WT) TP53 or a control vector into two different PDAC cell lines. Introduction of WT-TP53 increased the sensitivity of the cells to multiple chemotherapeutic drugs, signal transduction inhibitors, drugs and nutraceuticals and influenced key metabolic properties of the cells. Therefore, TP53 is a key molecule which is critical in drug sensitivity and metabolism of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Proliferación Celular , Suplementos Dietéticos , Receptores ErbB/genética , Mutación con Ganancia de Función , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína p53 Supresora de Tumor , Neoplasias Pancreáticas
6.
Cells ; 11(5)2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269416

RESUMEN

The TP53 tumor suppressor is mutated in ~75% of pancreatic cancers. The mutant TP53 protein in pancreatic ductal adenocarcinomas (PDAC) promotes tumor growth and metastasis. Attempts have been made to develop molecules that restore at least some of the properties of wild-type (WT) TP53. APR-246 is one such molecule, and it is referred to as a mutant TP53 reactivator. To understand the potential of APR-246 to sensitize PDAC cells to chemotherapy, we introduced a vector encoding WT-TP53 into two PDAC cell lines, one lacking the expression of TP53 (PANC-28) and one with a gain-of-function (GOF) mutant TP53 (MIA-PaCa-2). APR-246 increased drug sensitivity in the cells containing either a WT or mutant TP53 protein with GOF activity, but not in cells that lacked TP53. The introduction of WT-T53 into PANC-28 cells increased their sensitivity to the TP53 reactivator, chemotherapeutic drugs, and signal transduction inhibitors. The addition of WT-TP53 to PDAC cells with GOF TP53 also increased their sensitivity to the drugs and therapeutics, indicating that APR-246 could function in cells with WT-TP53 and GOF TP53. These results highlight the importance of knowledge of the type of TP53 mutation that is present in cancer patients before the administration of drugs which function through the reactivation of TP53.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Quinuclidinas/uso terapéutico , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Pancreáticas
7.
Biomolecules ; 12(2)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35204775

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer. In ~75% of PDAC, the tumor suppressor TP53 gene is mutated. Novel approaches to treat cancer involve compounds called mutant TP53 reactivators. They interact with mutant TP53 proteins and restore some of their growth suppressive properties, but they may also interact with other proteins, e.g., TP63 and TP73. We examined the ability of the TP53 reactivator APR-246 to interact with eleven modified berberine compounds (NAX compounds) in the presence and absence of WT-TP53 in two PDAC cell lines: the MIA-PaCa-2, which has gain of function (GOF) TP53 mutations on both alleles, and PANC-28, which lacks expression of the WT TP53 protein. Our results indicate the TP53 reactivator-induced increase in therapeutic potential of many modified berberines.


Asunto(s)
Berberina , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteína p53 Supresora de Tumor , Berberina/farmacología , Berberina/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Quinuclidinas , Proteína p53 Supresora de Tumor/genética
8.
Cells ; 10(8)2021 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-34440861

RESUMEN

Glycogen synthase kinase 3 (GSK3) was initially isolated as a critical protein in energy metabolism. However, subsequent studies indicate that GSK-3 is a multi-tasking kinase that links numerous signaling pathways in a cell and plays a vital role in the regulation of many aspects of cellular physiology. As a regulator of actin and tubulin cytoskeleton, GSK3 influences processes of cell polarization, interaction with the extracellular matrix, and directional migration of cells and their organelles during the growth and development of an animal organism. In this review, the roles of GSK3-cytoskeleton interactions in brain development and pathology, migration of healthy and cancer cells, and in cellular trafficking of mitochondria will be discussed.


Asunto(s)
Citoesqueleto/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Actinas/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Movimiento Celular , Humanos , Mitocondrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Tubulina (Proteína)/metabolismo
9.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201282

RESUMEN

Aging is associated with a general decline of cognitive functions, and it is widely accepted that this decline results from changes in the expression of proteins involved in regulation of synaptic plasticity. However, several lines of evidence have accumulated that suggest that the impaired function of the aged brain may be related to significant alterations in the energy metabolism. In the current study, we employed the label-free "Total protein approach" (TPA) method to focus on the similarities and differences in energy metabolism proteomes of young (1-month-old) and aged (22-month-old) murine brains. We quantified over 7000 proteins in each of the following three analyzed brain structures: the hippocampus, the cerebral cortex and the cerebellum. To the best of our knowledge, this is the most extensive quantitative proteomic description of energy metabolism pathways during the physiological aging of mice. The analysis demonstrates that aging does not significantly affect the abundance of total proteins in the studied brain structures, however, the levels of proteins constituting energy metabolism pathways differ significantly between young and aged mice.


Asunto(s)
Envejecimiento/metabolismo , Cerebelo/metabolismo , Corteza Cerebral/metabolismo , Metabolismo Energético , Hipocampo/metabolismo , Proteoma/metabolismo , Envejecimiento/patología , Animales , Cerebelo/patología , Corteza Cerebral/patología , Femenino , Hipocampo/patología , Ratones , Ratones Endogámicos C57BL , Proteoma/análisis
10.
Brain Commun ; 3(2): fcab036, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33977262

RESUMEN

Leukodystrophies are genetic disorders of cerebral white matter that almost exclusively have a progressive disease course. We became aware of three members of a family with a disorder characterized by a sudden loss of all previously acquired abilities around 1 year of age followed by almost complete recovery within 2 years. Cerebral MRI and myelin sensitive imaging showed a pronounced demyelination that progressed for several months despite signs of clinical improvement and was followed by remyelination. Exome sequencing did not-identify any mutations in known leukodystrophy genes but revealed a heterozygous variant in the FBP2 gene, c.343G>A, p. Val115Met, shared by the affected family members. Cerebral MRI of other family members demonstrated similar white matter abnormalities in all carriers of the variant in FBP2. The FBP2 gene codes for muscle fructose 1,6-bisphosphatase, an enzyme involved in gluconeogenesis that is highly expressed in brain tissue. Biochemical analysis showed that the variant has a dominant negative effect on enzymatic activity, substrate affinity, cooperativity and thermal stability. Moreover, it also affects the non-canonical functions of muscle fructose 1,6-bisphosphatase involved in mitochondrial protection and regulation of several nuclear processes. In patients' fibroblasts, muscle fructose 1,6-bisphosphatase shows no colocalization with mitochondria and nuclei leading to increased reactive oxygen species production and a disturbed mitochondrial network. In conclusion, the results of this study indicate that the variant in FBP2 disturbs cerebral energy metabolism and is associated with a novel remitting leukodystrophy.

11.
Cells ; 10(4)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917370

RESUMEN

Glycogen synthase kinase-3 (GSK-3) is a regulator of signaling pathways. KRas is frequently mutated in pancreatic cancers. The growth of certain pancreatic cancers is KRas-dependent and can be suppressed by GSK-3 inhibitors, documenting a link between KRas and GSK-3. To further elucidate the roles of GSK-3ß in drug-resistance, we transfected KRas-dependent MIA-PaCa-2 pancreatic cells with wild-type (WT) and kinase-dead (KD) forms of GSK-3ß. Transfection of MIA-PaCa-2 cells with WT-GSK-3ß increased their resistance to various chemotherapeutic drugs and certain small molecule inhibitors. Transfection of cells with KD-GSK-3ß often increased therapeutic sensitivity. An exception was observed with cells transfected with WT-GSK-3ß and sensitivity to the BCL2/BCLXL ABT737 inhibitor. WT-GSK-3ß reduced glycolytic capacity of the cells but did not affect the basal glycolysis and mitochondrial respiration. KD-GSK-3ß decreased both basal glycolysis and glycolytic capacity and reduced mitochondrial respiration in MIA-PaCa-2 cells. As a comparison, the effects of GSK-3 on MCF-7 breast cancer cells, which have mutant PIK3CA, were examined. KD-GSK-3ß increased the resistance of MCF-7 cells to chemotherapeutic drugs and certain signal transduction inhibitors. Thus, altering the levels of GSK-3ß can have dramatic effects on sensitivity to drugs and signal transduction inhibitors which may be influenced by the background of the tumor.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Suplementos Dietéticos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Terapia Molecular Dirigida , Neoplasias Pancreáticas/tratamiento farmacológico , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/enzimología , Adenocarcinoma/patología , Adenilato Quinasa/metabolismo , Antineoplásicos/farmacología , Berberina/farmacología , Berberina/uso terapéutico , Compuestos de Bifenilo/farmacología , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Progresión de la Enfermedad , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Femenino , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Glucólisis/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Malaria/tratamiento farmacológico , Metformina/farmacología , Metformina/uso terapéutico , Metástasis de la Neoplasia , Nitrofenoles/farmacología , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/patología , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Tiadiazoles/farmacología , Tiadiazoles/uso terapéutico , Ensayo de Tumor de Célula Madre , Proteína bcl-X/antagonistas & inhibidores , Proteína bcl-X/metabolismo , Gemcitabina
12.
Adv Biol Regul ; 79: 100780, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33451973

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic malignancy. Approximately 85% of pancreatic cancers are classified as PDACs. The survival of PDAC patients is very poor and only 5-10% of patients survive 5 years after diagnosis. Mutations at the KRAS and TP53 gene are frequently observed in PDAC patients. The PANC-28 cell line lacks wild-type (WT) TP53. In the following study, we have investigated the effects of restoration of WT TP53 activity on the sensitivity of PANC-28 pancreatic cancer cells to various drugs which are used to treat PDAC patients as well as other cancer patients. In addition, we have examined the effects of signal transduction inhibitors which target critical pathways frequently deregulated in cancer. The effects of the anti-diabetes drug metformin and the anti-malarial drug chloroquine were also examined as these drugs may be repurposed to treat other diseases. Finally, the effects of certain nutraceuticals which are used to treat various ailments were also examined. Introduction of WT-TP53 activity in PANC-28 PDAC cells, can increase their sensitivity to various drugs. Attempts are being made clinically to increase TP53 activity in various cancer types which will often inhibit cell growth by multiple mechanisms.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Proliferación Celular/efectos de los fármacos , Suplementos Dietéticos/análisis , Femenino , Humanos , Masculino , Mutación , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
13.
Int J Mol Sci ; 21(18)2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32962293

RESUMEN

Fbp2 (muscle isozyme of fructose 1,6-bisphosphatase) is a glyconeogenesis-regulating enzyme and a multifunctional protein indispensable for long-term potentiation (LTP) formation in the hippocampus. Here, we present evidence that expression of Fbp2 in murine hippocampal cell cultures is regulated by crosstalk between neurons and astrocytes. Co-culturing of the two cell types results in a decrease in Fbp2 expression in astrocytes, and its simultaneous increase in neurons, as compared to monocultures. These changes are regulated by paracrine signaling using extracellular vesicle (EV)-packed factors released to the culture medium. It is well accepted that astrocyte-neuron metabolic crosstalk plays a crucial role in shaping neuronal function, and recently we have suggested that Fbp2 is a hub linking neuronal signaling with redox and/or energetic state of brain during the formation of memory traces. Thus, our present results emphasize the importance of astrocyte-neuron crosstalk in the regulation of the cells' metabolism and synaptic plasticity, and bring us one step closer to a mechanistic understanding of the role of Fbp2 in these processes.


Asunto(s)
Astrocitos/enzimología , Comunicación Celular , Fructosa-Bifosfatasa/biosíntesis , Regulación Enzimológica de la Expresión Génica , Memoria , Neuronas/enzimología , Transducción de Señal , Animales , Astrocitos/citología , Metabolismo Energético , Ratones , Ratones Endogámicos BALB C , Plasticidad Neuronal , Neuronas/citología
14.
Cells ; 9(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492972

RESUMEN

Long-term potentiation (LTP) is a molecular basis of memory formation. Here, we demonstrate that LTP critically depends on fructose 1,6-bisphosphatase 2 (Fbp2)-a glyconeogenic enzyme and moonlighting protein protecting mitochondria against stress. We show that LTP induction regulates Fbp2 association with neuronal mitochondria and Camk2 and that the Fbp2-Camk2 interaction correlates with Camk2 autophosphorylation. Silencing of Fbp2 expression or simultaneous inhibition and tetramerization of the enzyme with a synthetic effector mimicking the action of physiological inhibitors (NAD+ and AMP) abolishes Camk2 autoactivation and blocks formation of the early phase of LTP and expression of the late phase LTP markers. Astrocyte-derived lactate reduces NAD+/NADH ratio in neurons and thus diminishes the pool of tetrameric and increases the fraction of dimeric Fbp2. We therefore hypothesize that this NAD+-level-dependent increase of the Fbp2 dimer/tetramer ratio might be a crucial mechanism in which astrocyte-neuron lactate shuttle stimulates LTP formation.


Asunto(s)
Fructosa-Bifosfatasa/metabolismo , Potenciación a Largo Plazo , Animales , Animales Recién Nacidos , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Silenciador del Gen , Hipocampo/citología , Potencial de la Membrana Mitocondrial , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Neuronas/metabolismo , Unión Proteica , Transporte de Proteínas , Sinapsis/metabolismo
15.
Biochim Biophys Acta Mol Cell Res ; 1867(10): 118770, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32524999

RESUMEN

Glycogen synthetase kinase-3 (GSK-3) and microRNAs (miRs) affect many critical signaling pathways important in cell growth. GSK-3 is a serine/threonine (S/T) protein kinase. Often when GSK-3 phosphorylates other proteins, they are inactivated and the signaling pathway is shut down. The PI3K/PTEN/AKT/GSK3/mTORC1 pathway plays key roles in regulation of cell growth, apoptosis, drug resistance, malignant transformation and metastasis and is often deregulated in cancer. When GSK-3 is phosphorylated by AKT it is inactivated and this often leads to growth promotion. When GSK-3 is not phosphorylated by AKT or other kinases at specific negative-regulatory residues, it can modify the activity of many proteins by phosphorylation, some of these proteins promote while others inhibit cell proliferation. This is part of the conundrum regarding GSK-3. The central theme of this review is the ability of GSK-3 to serve as either a tumor suppressor or a tumor promoter in cancer which is likely due to its diverse protein substrates. The effects of multiple miRs which bind mRNAs encoding GSK-3 and other signaling molecules and how they affect cell growth and sensitivity to various therapeutics will be discussed as they serve to regulate GSK-3 and other proteins important in controlling proliferation.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Glucógeno Sintasa Quinasa 3/genética , Humanos , MicroARNs/genética , Neoplasias/enzimología , Neoplasias/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
16.
Cells ; 9(5)2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365809

RESUMEN

Glycogen synthase kinase 3 (GSK-3) is a serine/threonine (S/T) protein kinase. Although GSK-3 originally was identified to have functions in regulation of glycogen synthase, it was subsequently determined to have roles in multiple normal biochemical processes as well as various disease conditions. GSK-3 is sometimes referred to as a moonlighting protein due to the multiple substrates and processes which it controls. Frequently, when GSK-3 phosphorylates proteins, they are targeted for degradation. GSK-3 is often considered a component of the PI3K/PTEN/AKT/GSK-3/mTORC1 pathway as GSK-3 is frequently phosphorylated by AKT which regulates its inactivation. AKT is often active in human cancer and hence, GSK-3 is often inactivated. Moreover, GSK-3 also interacts with WNT/ß-catenin signaling and ß-catenin and other proteins in this pathway are targets of GSK-3. GSK-3 can modify NF-κB activity which is often expressed at high levels in cancer cells. Multiple pharmaceutical companies developed small molecule inhibitors to suppress GSK-3 activity. In addition, various natural products will modify GSK-3 activity. This review will focus on the effects of small molecule inhibitors and natural products on GSK-3 activity and provide examples where these compounds were effective in suppressing cancer growth.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3/fisiología , Neoplasias/metabolismo , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vía de Señalización Wnt/fisiología
17.
Cells ; 9(3)2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32188010

RESUMEN

Glycogen synthase kinase 3ß (GSK3ß), originally described as a negative regulator of glycogen synthesis, is a molecular hub linking numerous signaling pathways in a cell. Specific GSK3ß inhibitors have anti-depressant effects and reduce depressive-like behavior in animal models of depression. Therefore, GSK3ß is suggested to be engaged in the pathogenesis of major depressive disorder, and to be a target and/or modifier of anti-depressants' action. In this review, we discuss abnormalities in the activity of GSK3ß and its upstream regulators in different brain regions during depressive episodes. Additionally, putative role(s) of GSK3ß in the pathogenesis of depression and the influence of anti-depressants on GSK3ß activity are discussed.


Asunto(s)
Encéfalo/patología , Trastorno Depresivo Mayor/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipocampo/metabolismo , Animales , Encéfalo/metabolismo , Trastorno Depresivo Mayor/patología , Hipocampo/patología , Humanos , Neuroprotección/fisiología , Transducción de Señal/fisiología
18.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118696, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32165184

RESUMEN

MicroRNAs (miRs) are small RNAs modulating gene expression and creating intricate regulatory networks that are dysregulated in many pathological states, including neurodegenerative disorders. In silico analyses denote a multifunctional kinase glycogen synthase kinase-3 (GSK3) as a putative target of numerous miRs identified in neural tissue. GSK3 is engaged in almost all aspects of neuronal development and functioning. Moreover, there is an autoregulatory feedback between GSK3 and miRNAs as the kinase can influence biogenesis of miRs. Members of the miR-GSK3 axes might thus represent convenient therapeutic targets in neuropathologies that display its abnormal regulation. This review summarizes the present knowledge about direct interactions of GSK3 and miRs in brain, and their putative roles in pathogenesis of neurodegenerative and neuropsychiatric disorders. This article is part of a Special Issue entitled: GSK-3 and related kinases in cancer, neurological and other disorders edited by James McCubrey, Agnieszka Gizak and Dariusz Rakus.


Asunto(s)
Encéfalo/metabolismo , Glucógeno Sintasa Quinasa 3/genética , MicroARNs/genética , Enfermedades Neurodegenerativas/genética , Encéfalo/crecimiento & desarrollo , Humanos , Enfermedades Neurodegenerativas/patología
19.
Aging (Albany NY) ; 12(4): 3388-3406, 2020 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-32035422

RESUMEN

Recent studies have revealed a resemblance of a HIF-regulated heart and brain glycolytic profiles prompting the hypothesis that the classical cell-to-cell lactate shuttle observed between astrocytes and neurons operates also in heart - between cardiac fibroblasts and cardiomyocytes. Here, we demonstrate that co-culturing of cardiomyocytes with cardiac fibroblasts leads to orchestrated changes in expression and/or localization pattern of glucose metabolism enzymes and lactate transport proteins in both cell types. These changes are regulated by paracrine signaling using microvesicle-packed and soluble factors released to the culture medium and, taken together, they concur with the cardiac lactate shuttle hypothesis. The results presented here show that similarity of heart and brain proteomes demonstrated earlier extend to physiological level and provide a theoretical rationale for designing novel therapeutic strategies for treatment of cardiomyopathies resulting from disruption of the maturation of cardiac metabolic pathways, and of heart failure associated with metabolic complications and age-related heart failure linked with extracellular matrix deposition and hypoxia.


Asunto(s)
Envejecimiento/metabolismo , Fibroblastos/metabolismo , Insuficiencia Cardíaca/metabolismo , Ácido Láctico/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Ciclo Celular/fisiología , Línea Celular , Ratones , Comunicación Paracrina/fisiología , Especies Reactivas de Oxígeno/metabolismo
20.
Cells ; 9(1)2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947613

RESUMEN

Fibroblasts are important contributors to cancer development. They create a tumor microenvironment and modulate our metabolism and treatment resistance. In the present paper, we demonstrate that healthy fibroblasts induce metabolic coupling with non-small cell lung cancer cells by down-regulating the expression of glycolytic enzymes in cancer cells and increasing the fibroblasts' ability to release lactate and thus support cancer cells with energy-rich glucose-derived metabolites, such as lactate and pyruvate-a process known as the reverse Warburg effect. We demonstrate that these changes result from a fibroblasts-stimulated increase in the expression of fructose bisphosphatase (Fbp) in cancer cells and the consequent modulation of Hif1α function. We show that, in contrast to current beliefs, in lung cancer cells, the predominant and strong interaction with the Hif1α form of Fbp is not the liver (Fbp1) but in the muscle (Fbp2) isoform. Since Fbp2 oligomerization state and thus, its role is regulated by AMP and NAD+-crucial indicators of cellular metabolic conditions-we hypothesize that the Hif1α-dependent regulation of the metabolism in cancer is modulated through Fbp2, a sensor of the energy and redox state of a cell.


Asunto(s)
Adenocarcinoma Bronquioloalveolar/metabolismo , Fibroblastos/metabolismo , Fructosa-Bifosfatasa/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Pulmonares/metabolismo , Células A549 , Adenocarcinoma Bronquioloalveolar/patología , Animales , Células Cultivadas , Técnicas de Cocultivo , Fructosa-Bifosfatasa/genética , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...