Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Analyst ; 149(13): 3537-3546, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38758167

RESUMEN

Single nucleotide variants (SNVs) play a crucial role in understanding genetic diseases, cancer development, and personalized medicine. However, existing ligase-based amplification and detection techniques, such as Rolling Circle Amplification and Ligase Detection Reaction, suffer from low efficiency and difficulties in product detection. To address these limitations, we propose a novel approach that combines Ligase Chain Reaction (LCR) with acoustic detection using highly dissipative liposomes. In our study, we are using LCR combined with biotin- and cholesterol-tagged primers to produce amplicons also modified at each end with a biotin and cholesterol molecule. We then apply the LCR mix without any purification directly on a neutravidin modified QCM device Au-surface, where the produced amplicons can bind specifically through the biotin end. To improve sensitivity, we finally introduce liposomes as signal enhancers. For demonstration, we used the detection of the BRAF V600E point mutation versus the wild-type allele, achieving an impressive detection limit of 220 aM of the mutant target in the presence of the same amount of the wild type. Finally, we combined the assay with a microfluidic fluidized bed DNA extraction technology, offering the potential for semi-automated detection of SNVs in patients' crude samples. Overall, our LCR/acoustic method outperforms other LCR-based approaches and surface ligation biosensing techniques in terms of detection efficiency and time. It effectively overcomes challenges related to DNA detection, making it applicable in diverse fields, including genetic disease and pathogen detection.


Asunto(s)
Reacción en Cadena de la Ligasa , Límite de Detección , Liposomas , Liposomas/química , Humanos , Reacción en Cadena de la Ligasa/métodos , Proteínas Proto-Oncogénicas B-raf/genética , Polimorfismo de Nucleótido Simple , Biotina/química , Acústica , Avidina/química , Tecnicas de Microbalanza del Cristal de Cuarzo/métodos , Oro/química , ADN/genética , ADN/química , Colesterol , Mutación Puntual
2.
Anal Chem ; 95(50): 18514-18521, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38065570

RESUMEN

Loop-mediated isothermal amplification (LAMP) is a low-technology molecular assay that is highly adaptable to point-of-care (POC) applications. However, achieving sensitive naked-eye detection of the amplified target in a crude sample is challenging. Herein, we report a simple yet highly efficient and sensitive methodology for the colorimetric visualization of a single target copy in saliva using chitosan-capped gold nanoparticles (Chit-AuNPs) synthesized via a green chemistry approach. The presence or absence of free Chit in the Chit-AuNPs solution was shown to affect LAMP colorimetric detection oppositely: the observed stabilization in the negative samples and aggregation in the positive samples in the presence of free Chit were reversed in the case of neat Chit-AuNPs. The mechanism of the two assays was investigated and attributed to electrostatic and depletion effects exerted between the Chit-AuNPs, free Chit, and the solution components. The developed contamination-free, one-tube assay successfully amplified and detected down to 1-5 cfu of Salmonella and 10 copies of SARS-CoV-2 per reaction (25 µL) used, respectively, as model DNA and RNA targets in the presence of 20% saliva, making the method suitable for POC applications. Compared to the commonly used pH-sensitive dyes, Chit-AuNPs are shown to have an enhanced sensitivity toward naked-eye colorimetric observation owing to the direct detection of DNA amplicons. Thus, this is a simple, highly sensitive, fast, and versatile naked-eye detection methodology that could be coupled to any LAMP or RT-LAMP assay, avoiding the need of using complicated sample pretreatments and/or AuNPs long and laborious functionalization processes.


Asunto(s)
Quitosano , Nanopartículas del Metal , Ácidos Nucleicos , Oro/química , Saliva , Sensibilidad y Especificidad , ADN , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular , Colorimetría/métodos
3.
Microsyst Nanoeng ; 9: 109, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680311

RESUMEN

Liquid biopsy, in particular circulating tumor DNA (ctDNA) analysis, has paved the way for a new noninvasive approach to cancer diagnosis, treatment selection and follow-up. As a crucial step in the analysis, the extraction of the genetic material from a complex matrix needs to meet specific requirements such as high specificity and low loss of target. Here, we developed a new generation of microfluidic fluidized beds (FBs) that enable the efficient extraction and preconcentration of specific ctDNA sequences from human serum with flow rates up to 15 µL/min. We first demonstrated that implementation of a vibration system inducing flow rate fluctuations combined with a mixture of different bead sizes significantly enhanced bead homogeneity, thereby increasing capture efficiency. Taking advantage of this new generation of high-throughput magnetic FBs, we then developed a new method to selectively capture a double-stranded (dsDNA) BRAF mutated DNA sequence in complex matrices such as patient serum. Finally, as proof of concept, ligation chain reaction (LCR) assays were performed to specifically amplify a mutated BRAF sequence, allowing the detection of concentrations as low as 6 × 104 copies/µL of the mutated DNA sequence in serum.

4.
PLoS Biol ; 21(9): e3002305, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37721949

RESUMEN

Protein function can be modulated by phase transitions in their material properties, which can range from liquid- to solid-like; yet, the mechanisms that drive these transitions and whether they are important for physiology are still unknown. In the model plant Arabidopsis, we show that developmental robustness is reinforced by phase transitions of the plasma membrane-bound lipid-binding protein SEC14-like. Using imaging, genetics, and in vitro reconstitution experiments, we show that SEC14-like undergoes liquid-like phase separation in the root stem cells. Outside the stem cell niche, SEC14-like associates with the caspase-like protease separase and conserved microtubule motors at unique polar plasma membrane interfaces. In these interfaces, SEC14-like undergoes processing by separase, which promotes its liquid-to-solid transition. This transition is important for root development, as lines expressing an uncleavable SEC14-like variant or mutants of separase and associated microtubule motors show similar developmental phenotypes. Furthermore, the processed and solidified but not the liquid form of SEC14-like interacts with and regulates the polarity of the auxin efflux carrier PINFORMED2. This work demonstrates that robust development can involve liquid-to-solid transitions mediated by proteolysis at unique plasma membrane interfaces.

5.
ACS Sens ; 7(2): 495-503, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35073481

RESUMEN

Regular screening of point mutations is of importance to cancer management and treatment selection. Although techniques like next-generation sequencing and digital polymerase chain reaction (PCR) are available, these are lacking in speed, simplicity, and cost-effectiveness. The development of alternative methods that can detect the extremely low concentrations of the target mutation in a fast and cost-effective way presents an analytical and technological challenge. Here, an approach is presented where for the first time an allele-specific PCR (AS-PCR) is combined with a newly developed high fundamental frequency quartz crystal microbalance array as biosensor for the amplification and detection, respectively, of cancer point mutations. Increased sensitivity, compared to fluorescence detection of the AS-PCR amplicons, is achieved through energy dissipation measurement of acoustically "lossy" liposomes binding to surface-anchored dsDNA targets. The method, applied to the screening of BRAF V600E and KRAS G12D mutations in spiked-in samples, was shown to be able to detect 1 mutant copy of genomic DNA in an excess of 104 wild-type molecules, that is, with a mutant allele frequency (MAF) of 0.01%. Moreover, validation of tissue and plasma samples obtained from melanoma, colorectal, and lung cancer patients showed excellent agreement with Sanger sequencing and ddPCR; remarkably, the efficiency of this AS-PCR/acoustic methodology to detect mutations in real samples was demonstrated to be below 1% MAF. The combined high sensitivity and technology-readiness level of the methodology, together with the ability for multiple sample analysis (24 array biochip), cost-effectiveness, and compatibility with routine workflow, make this approach a promising tool for implementation in clinical oncology labs for tissue and liquid biopsy.


Asunto(s)
Neoplasias , Acústica , Alelos , Humanos , Biopsia Líquida/métodos , Mutación , Neoplasias/diagnóstico , Neoplasias/genética , Reacción en Cadena de la Polimerasa/métodos
6.
Sensors (Basel) ; 20(21)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138312

RESUMEN

Surface plasmon resonance (SPR) and Love wave (LW) surface acoustic wave (SAW) sensors have been established as reliable biosensing technologies for label-free, real-time monitoring of biomolecular interactions. This work reports the development of a combined SPR/LW-SAW platform to facilitate simultaneous optical and acoustic measurements for the investigation of biomolecules binding on a single surface. The system's output provides recordings of two acoustic parameters, phase and amplitude of a Love wave, synchronized with SPR readings. We present the design and manufacturing of a novel experimental set-up employing, in addition to the SPR/LW-SAW device, a 3D-printed plastic holder combined with a PDMS microfluidic cell so that the platform can be used in a flow-through mode. The system was evaluated in a systematic study of the optical and acoustic responses for different surface perturbations, i.e., rigid mass loading (Au deposition), pure viscous loading (glycerol and sucrose solutions) and protein adsorption (BSA). Our results provide the theoretical and experimental basis for future application of the combined system to other biochemical and biophysical studies.

7.
Anal Chem ; 92(12): 8186-8193, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32449355

RESUMEN

The objective of this work is to present a methodology for the selection of nanoparticles such as liposomes to be used as acoustic probes for the detection of very low concentrations of DNA. Liposomes, applied in the past as mass amplifiers and detected through frequency measurement, are employed in the current work as probes for energy-dissipation enhancement. Because the dissipation signal is related to the structure of the sensed nanoentity, a systematic investigation of the geometrical features of the liposome/DNA complex was carried out. We introduce the parameter of dissipation capacity by which several sizes of liposome and DNA structures were compared with respect to their ability to dissipate acoustic energy at the level of a single molecule/particle. Optimized 200 nm liposomes anchored to a dsDNA chain led to an improvement of the limit of detection (LoD) by 3 orders of magnitude when compared to direct DNA detection, with the new LoD being 1.2 fmol (or 26 fg/µL or 2 pM). Dissipation monitoring was also shown to be 8 times more sensitive than the corresponding frequency response. The high versatility of this new methodology is demonstrated in the detection of genetic biomarkers down to 1-2 target copies in real samples such as blood. This study offers new prospects in acoustic detection with potential use in real-world diagnostics.


Asunto(s)
Acústica , Técnicas Biosensibles , ADN/análisis , ADN/genética , Sondas de ADN/química , Humanos , Liposomas/química , Tecnicas de Microbalanza del Cristal de Cuarzo
8.
Anal Bioanal Chem ; 411(20): 5297-5307, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31161322

RESUMEN

The design and fabrication of a continuous-flow µPCR device with very short amplification time and low power consumption are presented. Commercially available, 4-layer printed circuit board (PCB) substrates are employed, with in-house designed yet industrially manufactured embedded Cu micro-resistive heaters lying at very close distance from the microfluidic network, where DNA amplification takes place. The 1.9-m-long microchannel in combination with desirably high flow velocities (for fast amplification) challenged the robustness of the sealing that was overcome with the development of a novel bonding method rendering the microdevice robust even at extreme pressure drops (12 bars). The proposed fabrication methods are PCB compatible, allowing for mass and reliable production of the µPCR device in the established PCB industry. The µPCR chip was successfully validated during the amplification of two different DNA fragments (and with different target DNA copies) corresponding to the exon 20 of the BRCA1 gene, and to the plasmid pBR322, a commonly used cloning vector in E. coli. Successful DNA amplification was demonstrated at total reaction times down to 2 min, with a power consumption of 2.7 W, rendering the presented µPCR one of the fastest and lowest power-consuming devices, suitable for implementation in low-resource settings. Detailed numerical calculations of the DNA residence time distributions, within an acceptable temperature range for denaturation, annealing, and extension, performed for the first time in the literature, provide useful information regarding the actual on-chip PCR protocol and justify the maximum volumetric flow rate for successful DNA amplification. The calculations indicate that the shortest amplification time is achieved when the device is operated at its enzyme kinetic limit (i.e., extension rate). Graphical abstract.


Asunto(s)
ADN/química , Dispositivos Laboratorio en un Chip , Materiales Manufacturados , Bifenilos Policlorados/química , Reacción en Cadena de la Polimerasa/métodos
9.
ACS Sens ; 4(5): 1329-1336, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30964650

RESUMEN

The objective of this work is to develop a methodology and associated platform for nucleic acid detection at the point-of-care (POC) that is sensitive, user-friendly, affordable, rapid, and robust. The heart of this system is an acoustic wave sensor, based on a Surface Acoustic Wave (SAW) or Quartz Crystal Microbalance (QCM) device, which is employed for the label-free detection of isothermally amplified target DNA. Nucleic acids amplification and detection is demonstrated inside three crude human samples, i.e., whole blood, saliva, and nasal swab, spiked in with 10-100 Salmonella cells. To qualify for POC applications, a portable platform was developed based on 3D printing, integrating inside a single box: (i) simple fluidics based on plastic tubing and a mini peristaltic pump, (ii) a heating plate combined with disposable reaction tubes for isothermal amplification; (iii) a mini antenna analyzer operated through a tablet; and (iv) an acoustic wave device housing unit. The simplicity of the method combined with smartphone operation and detection, rapid sample-to-answer analysis time (30 min), and high performance (detection limit 4 × 103 CFU/ml) in three of the most important human samples in diagnostics suggest that the methodology could become a tool of choice for nucleic acid detection at the POC. In addition, the low cost of the platform and assay holds promise for its adoption in resource limited areas. The acoustic detection method is shown to give similar results with a standard colorimetric assay carried out in saliva and nasal swab but can also be used to detect nucleic acids inside whole blood, where a colorimetric assay failed to perform.


Asunto(s)
Acústica/instrumentación , Pruebas Genéticas/instrumentación , Sistemas de Atención de Punto , Impresión Tridimensional , Salmonella/aislamiento & purificación , Teléfono Inteligente , Colorimetría , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Salmonella/genética
10.
Biosens Bioelectron ; 111: 52-58, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29635118

RESUMEN

The fast and efficient detection of foodborne pathogens is a societal priority, given the large number of food-poisoning outbreaks, and a scientific and technological challenge, given the need to detect as little as 1 viable cell in 25 gr of food. Here, we present the first approach that achieves the above goal, thanks to the use of a micro/nano-technology and the detection capability of acoustic wave sensors. Starting from 1 Salmonella cell in 25 ml of milk, we employ immuno-magnetic beads to capture cells after only 3 h of pre-enrichment and subsequently demonstrate efficient DNA amplification using the Loop Mediated Isothermal Amplification method (LAMP) and acoustic detection in an integrated platform, within an additional ½ h. The demonstrated 4 h sample-to-analysis time comes as a huge improvement to the current need of few days to obtain the same result. In addition, the work presents the first reported Lab-on-Chip platform that comprises an acoustic device as the sensing element, exhibiting impressive analytical features, namely, an acoustic limit of detection of 2 cells/µl or 3 aM of the DNA target and ability to detect in a label-free manner dsDNA amplicons in impure samples. The use of food samples together with the incorporation of the necessary pre-enrichment step and ability for multiple analysis with an internal control, make the proposed methodology highly relevant to real-world applications. Moreover, the work suggests that acoustic wave devices can be used as an attractive alternative to electrochemical sensors in integrated platforms for applications in food safety and the point-of-care diagnostics.


Asunto(s)
Acústica/instrumentación , Técnicas Biosensibles/instrumentación , Análisis de los Alimentos/instrumentación , Enfermedades Transmitidas por los Alimentos/microbiología , Leche/microbiología , Infecciones por Salmonella/microbiología , Salmonella/aislamiento & purificación , Animales , ADN Bacteriano/análisis , ADN Bacteriano/genética , Diseño de Equipo , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Humanos , Dispositivos Laboratorio en un Chip , Límite de Detección , Salmonella/genética , Sonido
11.
Chem Commun (Camb) ; 53(57): 8058-8061, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28671702

RESUMEN

The present study demonstrates the sensitive and label-free acoustic detection of dsDNA amplicons produced from whole Salmonella Thyphimurium cells without employing any DNA extraction and/or purification step, in the presence of the lysed bacterial cells and in a hybridization-free assay. A sample-to-answer assay is also shown during DNA detection directly in milk.


Asunto(s)
ADN Bacteriano/análisis , Leche/química , Salmonella/química , Animales , Leche/microbiología
12.
Anal Chem ; 89(7): 4198-4203, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28281339

RESUMEN

The ability to derive information on the conformation of surface attached biomolecules by using simple techniques such as biosensors is currently considered of great importance in the fields of surface science and nanotechnology. Here we present a nanoshape sensitive biosensor where a simple mathematical expression is used to relate acoustic measurements to the geometrical features of a surface-attached biomolecule. The underlying scientific principle is that the acoustic ratio (ΔD/ΔF) is a measure of the hydrodynamic volume of the attached entity, mathematically expressed by its intrinsic viscosity [η]. A methodology is presented in order to produce surfaces with discretely bound biomolecules where their native conformation is maintained. Using DNA anchors we attached a spherical protein (streptavidin) and a rod-shaped DNA (47bp) to a quartz crystal microbalance (QCM) device in a suspended way and predicted correctly through acoustic measurements their conformation, i.e., shape and length. The methodology can be widely applied to draw conclusions on the conformation of any biomolecule or nanoentity upon specific binding on the surface of an acoustic wave device.


Asunto(s)
ADN/química , Nanopartículas/química , Estreptavidina/química , Sitios de Unión , Hidrodinámica , Tamaño de la Partícula , Tecnicas de Microbalanza del Cristal de Cuarzo , Propiedades de Superficie , Viscosidad
13.
Anal Chim Acta ; 942: 58-67, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27720122

RESUMEN

We present a polymeric microfluidic chip capable of purifying DNA through solid phase extraction. It is designed to be used as a module of an integrated Lab-on-chip platform for pathogen detection, but it can also be used as a stand-alone device. The microfluidic channels are oxygen plasma micro-nanotextured, i.e. randomly roughened in the micro-nano scale, a process creating high surface area as well as high density of carboxyl groups (COOH). The COOH groups together with a buffer that contains polyethylene glycol (PEG), NaCl and ethanol are able to bind DNA on the microchannel surface. The chip design incorporates a mixer so that sample and buffer can be efficiently mixed on chip under continuous flow. DNA is subsequently eluted in water. The chip is able to isolate DNA with high recovery efficiency (96± 11%) in an extremely large dynamic range of prepurified Salmonella DNA as well as from Salmonella cell lysates that correspond to a range of 5 to 1.9 × 108 cells (0.263 fg to 2 × 500 ng). The chip was evaluated via absorbance measurements, polymerase chain reaction (PCR), and gel electrophoresis.


Asunto(s)
ADN/aislamiento & purificación , Dispositivos Laboratorio en un Chip , Nanotecnología , Gases em Plasma , Polietilenglicoles/química , Electroforesis en Gel de Poliacrilamida , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa , Espectrofotometría Ultravioleta
14.
Anal Chem ; 88(12): 6472-8, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27230595

RESUMEN

In this work we provide strong experimental evidence for the hydrodynamic nature of the acoustic wave/biomolecule interaction at a solid/liquid interface. By using a wide range of DNAs of various sizes and by assuming DNA attachment as discrete particles through a neutravidin/biotin link, we prove experimentally that the acoustic ratio (dissipation/frequency) is directly related to the molecules' intrinsic viscosity [η]. The relationship of [η] to the size and shape of biomolecules is described in general and more specifically for linear dsDNA; equations are derived linking the measured acoustic ratio to the number of dsDNA base pairs for two acoustic sensors, the QCM and Love-wave devices operating at a frequency of 35 and 155 MHz, respectively. Single-stranded DNAs were also tested and shown to fit well to the equation derived for the double-stranded molecules while new insight is provided on their conformation on a surface. Other types of DNA are also shown to fit the proposed model. The current work establishes a new way of viewing acoustic sensor data and lays down the groundwork for a surface technique where quantitative information can be obtained at the nanometer scale regarding the shape and size, i.e., conformation of biomolecules at an interface.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/análisis , Tecnicas de Microbalanza del Cristal de Cuarzo/métodos , Acústica/instrumentación , Avidina/química , Técnicas Biosensibles/instrumentación , Biotina/química , ADN de Cadena Simple/análisis , Hidrodinámica , Modelos Moleculares , Tecnicas de Microbalanza del Cristal de Cuarzo/instrumentación , Sonido , Viscosidad
15.
Stud Health Technol Inform ; 224: 67-72, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27225555

RESUMEN

The development of integrated, fast and affordable platforms for pathogen detection is an emerging area where a multidisciplinary approach is necessary for designing microsystems employing miniaturized devices; these new technologies promise a significant advancement of the current state of analytical testing leading to improved healthcare. In this work, the development of a lab-on-chip microsystem platform for the genetic analysis of Salmonella in milk samples is presented. The heart of the platform is an acoustic detection biochip, integrated with a microfluidic module. This detection platform is combined with a micro-processor, which, alongside with magnetic beads technology and a DNA micro-amplification module, are responsible for performing sample pre-treatment, bacteria lysis, nucleic acid purification and amplification. Automated, multiscale manipulation of fluids in complex microchannel networks is combined with novel sensing principles developed by some of the partners. This system is expected to have a significant impact in food-pathogen detection by providing for the first time an integrated detection test for Salmonella screening in a very short time. Finally, thanks to the low cost and compact technologies involved, the proposed set-up is expected to provide a competitive analytical platform for direct application in field settings.


Asunto(s)
Microbiología de Alimentos/métodos , Dispositivos Laboratorio en un Chip/microbiología , Leche/microbiología , Salmonella/aislamiento & purificación , Animales , ADN Bacteriano/análisis , Salmonella/genética
16.
Chem Commun (Camb) ; 52(39): 6541-4, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27109863

RESUMEN

The sensitivity of QCM-D to molecular hydrodynamic properties is applied in this work to study conformational changes of the intrinsically disordered protein ZipA. Acoustic measurements can clearly follow ZipA's unstructured domain expansion and contraction with salt content and be correlated with changes in the hydrodynamic radius of 1.8 nm or less.


Asunto(s)
Proteínas Portadoras/química , Proteínas de Ciclo Celular/química , Proteínas de Escherichia coli/química , Proteínas Intrínsecamente Desordenadas/química , Membrana Dobles de Lípidos/química , Estructura Terciaria de Proteína , Tecnicas de Microbalanza del Cristal de Cuarzo , Viscosidad
17.
PLoS One ; 10(7): e0132773, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26177507

RESUMEN

A multi-targeting protocol for the detection of three of the most important bacterial phytopathogens, based on their scientific and economic importance, was developed using an acoustic biosensor (the Quartz Crystal Microbalance) for DNA detection. Acoustic detection was based on a novel approach where DNA amplicons were monitored and discriminated based on their length rather than mass. Experiments were performed during real time monitoring of analyte binding and in a direct manner, i.e. without the use of labels for enhancing signal transduction. The proposed protocol improves time processing by circumventing gel electrophoresis and can be incorporated as a routine detection method in a diagnostic lab or an automated lab-on-a-chip system for plant pathogen diagnostics.


Asunto(s)
Acústica , Bacterias/aislamiento & purificación , Técnicas Biosensibles/métodos , Solanum lycopersicum/microbiología , Límite de Detección , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Reacción en Cadena de la Polimerasa
18.
Chem Commun (Camb) ; 51(57): 11504-7, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26097916

RESUMEN

By using an acoustic wave methodology that allows direct sensing of biomolecular conformations, we achieved the detection of multiple target DNAs using a single probe, exploiting the fact that each bound target results in a hybridized product of a different shape.


Asunto(s)
Acústica/instrumentación , Técnicas Biosensibles/instrumentación , ADN/análisis , MicroARNs/análisis , Hibridación de Ácido Nucleico , Sonido , Sondas de ADN/química , Conformación de Ácido Nucleico , Tecnicas de Microbalanza del Cristal de Cuarzo/instrumentación
19.
J Plant Physiol ; 177: 44-50, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25659334

RESUMEN

The effect of spermine on proton transport across large unilamellar liposomes containing incorporated complexes of the PSII antenna has been studied with the application of a pH-sensitive dye entrapped inside the vesicles. Both monomeric LHCbs and trimeric LHCII increased the permeability of proteoliposomes to protons when in a partly aggregated state within the lipid membrane. We have previously shown that a spermine-induced conformational change in LHCII results in its aggregation and ultimately in the enhancement of excitation energy as heat (qE). In this paper, spermine-induced aggregation of LHCII was found to facilitate proton transport across the proteoliposomes, indicating that a second protective mechanism (other than qE) might exist and might be regulated in vivo by polyamines when photosynthesis is saturated in excess light.


Asunto(s)
Complejos de Proteína Captadores de Luz/metabolismo , Protones , Espermina/metabolismo , Spinacia oleracea/metabolismo , Membrana Celular/metabolismo , Transporte Iónico , Proteolípidos/metabolismo
20.
Analyst ; 139(16): 3918-25, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-24943453

RESUMEN

Surface acoustic wave sensors with integrated microfluidics for multi-sample sensing have been implemented in this work towards the quantitative correlation of the acoustic signal with the molecular weight of surface bound proteins investigating different interaction/binding conditions. The results are presented for: (i) four different biotinylated molecules (30 ≤ Mw ≤ 150 kDa) specifically binding to neutravidin; (ii) the same four non-biotinylated molecules, as well as neutravidin, adsorbing onto gold; and (iii) four cardiac marker proteins (86 ≤ Mw ≤ 540 kDa) specifically binding to their homologous antibodies. Surface plasmon resonance was employed as an independent optical mass sensor. A linear relationship was found to exist between the phase change of the acoustic signal and the molecular weight of the proteins in both cases of specific binding. In contrast, non-specific binding of proteins directly onto gold exhibited no such linear relationship. In all three cases phase change was correlated with the bound mass per area. The underlying mechanism behind the different behavior between specific and non-specific binding is discussed by taking into account the geometrical restrictions imposed by the size of the specific biorecognition molecule and the corresponding bound protein. Our results emphasize the quantitative nature of the phase of the acoustic signal in determining the Mw (in the case of specific binding) with a resolution of 15% and the mass of the bound proteins (in all cases), as well as the significance of the biorecognition molecules in deriving the molecular weight from acoustic or optical detectors.


Asunto(s)
Técnicas Biosensibles/instrumentación , Proteínas/química , Acústica/instrumentación , Adsorción , Animales , Anticuerpos Inmovilizados/química , Avidina/química , Biotinilación , Diseño de Equipo , Oro/química , Humanos , Peso Molecular , Proteínas/aislamiento & purificación , Resonancia por Plasmón de Superficie/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...