Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 60(26): 2116-2129, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34156827

RESUMEN

Viperin is a member of the radical S-adenosylmethionine superfamily and has been shown to restrict the replication of a wide range of RNA and DNA viruses. We recently demonstrated that human viperin (HsVip) catalyzes the conversion of CTP to 3'-deoxy-3',4'-didehydro-CTP (ddhCTP or ddh-synthase), which acts as a chain terminator for virally encoded RNA-dependent RNA polymerases from several flaviviruses. Viperin homologues also exist in non-chordate eukaryotes (e.g., Cnidaria and Mollusca), numerous fungi, and members of the archaeal and eubacterial domains. Recently, it was reported that non-chordate and non-eukaryotic viperin-like homologues are also ddh-synthases and generate a diverse range of ddhNTPs, including the newly discovered ddhUTP and ddhGTP. Herein, we expand on the catalytic mechanism of mammalian, fungal, bacterial, and archaeal viperin-like enzymes with a combination of X-ray crystallography and enzymology. We demonstrate that, like mammalian viperins, these recently discovered viperin-like enzymes operate through the same mechanism and can be classified as ddh-synthases. Furthermore, we define the unique chemical and physical determinants supporting ddh-synthase activity and nucleotide selectivity, including the crystallographic characterization of a fungal viperin-like enzyme that utilizes UTP as a substrate and a cnidaria viperin-like enzyme that utilizes CTP as a substrate. Together, these results support the evolutionary conservation of the ddh-synthase activity and its broad phylogenetic role in innate antiviral immunity.


Asunto(s)
Proteínas Arqueales/química , Proteínas Bacterianas/química , Proteínas Fúngicas/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Secuencia de Aminoácidos , Animales , Proteínas Arqueales/metabolismo , Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Biocatálisis , Proteínas Fúngicas/metabolismo , Humanos , Hypocrea/enzimología , Methanomicrobiaceae/enzimología , Ratones , Nucleótidos/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Unión Proteica , Especificidad por Sustrato
2.
Mol Pharmacol ; 99(6): 412-425, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33795350

RESUMEN

Previous short-hairpin RNA knockdown studies have established that depletion of human uracil DNA glycosylase (hUNG) sensitizes some cell lines to 5-fluorodeoxyuridine (FdU). Here, we selectively inhibit the catalytic activity of hUNG by lentiviral transduction of uracil DNA glycosylase inhibitor protein into a large panel of cancer cell lines under control of a doxycycline-inducible promoter. This induced inhibition strategy better assesses the therapeutic potential of small-molecule targeting of hUNG. In total, 6 of 11 colorectal lines showed 6- to 70-fold increases in FdU potency upon hUNG inhibition ("responsive"). This hUNG-dependent response was not observed with fluorouracil (FU), indicating that FU does not operate through the same DNA repair mechanism as FdU in vitro. Potency of the thymidylate synthase inhibitor raltitrexed (RTX), which elevates deoxyuridine triphosphate levels, was only incrementally enhanced upon hUNG inhibition (<40%), suggesting that responsiveness is associated with incorporation and persistence of FdU in DNA rather than deoxyuridine. The importance of FU/A and FU/G lesions in the toxicity of FdU is supported by the observation that dT supplementation completely rescued the toxic effects of U/A lesions resulting from RTX, but dT only increased the IC50 for FdU, which forms both FU/A and FU/G mismatches. Contrary to previous reports, cellular responsiveness to hUNG inhibition did not correlate with p53 status or thymine DNA glycosylase expression. A model is suggested in which the persistence of FU/A and FU/G base pairs in the absence of hUNG activity elicits an apoptotic DNA damage response in both responsive and nonresponsive colorectal lines. SIGNIFICANCE STATEMENT: The pyrimidine base 5-fluorouracil is a mainstay chemotherapeutic for treatment of advanced colorectal cancer. Here, this study shows that its deoxynucleoside form, 5-fluorodeoxyuridine (FdU), operates by a distinct DNA incorporation mechanism that is strongly potentiated by inhibition of the DNA repair enzyme human uracil DNA glycosylase. The hUNG-dependent mechanism was present in over 50% of colorectal cell lines tested, suggesting that a significant fraction of human cancers may be sensitized to FdU in the presence of a small-molecule hUNG inhibitor.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/patología , Floxuridina/farmacología , Fluorouracilo/farmacología , Quinazolinas/farmacología , Tiofenos/farmacología , Uracil-ADN Glicosidasa/antagonistas & inhibidores , Línea Celular Tumoral , Daño del ADN , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Uracil-ADN Glicosidasa/metabolismo
3.
Annu Rev Virol ; 7(1): 421-446, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32603630

RESUMEN

Most cells respond to viral infections by activating innate immune pathways that lead to the induction of antiviral restriction factors. One such factor, viperin, was discovered almost two decades ago based on its induction during viral infection. Since then, viperin has been shown to possess activity against numerous viruses via multiple proposed mechanisms. Most recently, however, viperin was demonstrated to catalyze the conversion of cytidine triphosphate (CTP) to 3'-deoxy-3',4'-didehydro-CTP (ddhCTP), a previously unknown ribonucleotide. Incorporation of ddhCTP causes premature termination of RNA synthesis by the RNA-dependent RNA polymerase of some viruses. To date, production of ddhCTP by viperin represents the only activity of viperin that links its enzymatic activity directly to an antiviral mechanism in human cells. This review examines the multiple antiviral mechanisms and biological functions attributed to viperin.


Asunto(s)
Citidina Trifosfato/metabolismo , Proteínas/genética , Proteínas/metabolismo , Virosis/virología , Humanos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Proteínas/química , ARN Polimerasa Dependiente del ARN/metabolismo
4.
Nature ; 583(7814): E15, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32541969

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nucleic Acids Res ; 47(8): 4153-4168, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30892639

RESUMEN

dUTP is a close structural congener of dTTP and can be readily incorporated into DNA opposite to adenine during DNA replication leading to non-mutagenic dU/A base pairs ('uracilation'). We find that dU/A pairs located within DNA transcriptional templates optimized for either T7 RNA polymerase (T7 RNAP) or human RNA polymerase II (pol II) have inhibitory and mutagenic effects on transcription. The data for T7 RNAP establishes that even a single dU/A pair can inhibit promoter binding and transcription initiation up to 30-fold, and that inhibitory effects on transcription elongation are also possible. Sequencing of the mRNA transcribed from uniformly uracilated DNA templates by T7 RNAP indicated an increased frequency of transversion and insertion mutations compared to all T/A templates. Strong effects of dU/A pairs on cellular transcription activity and fidelity were also observed with RNA pol II using uracil base excision repair (UBER)-deficient human cells. At the highest levels of template uracilation, transcription by RNA pol II was completely blocked. We propose that these effects arise from the decreased thermodynamic stability and increased dynamics of dU/A pairs in DNA. The potential implications of these findings on gene regulation and disease are discussed.


Asunto(s)
Reparación del ADN , ARN Polimerasas Dirigidas por ADN/genética , ADN/genética , Desoxiuridina/metabolismo , ARN Polimerasa II/genética , ARN/genética , Transcripción Genética , Proteínas Virales/genética , Emparejamiento Base , Secuencia de Bases , Línea Celular Tumoral , ADN/metabolismo , Replicación del ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Cinética , Mutación , Regiones Promotoras Genéticas , Unión Proteica , ARN/metabolismo , ARN Polimerasa II/metabolismo , Termodinámica , Proteínas Virales/metabolismo
6.
Nature ; 562(7725): E3, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29980769

RESUMEN

Change history: In the HTML version of this Letter, Extended Data Fig. 4 incorrectly corresponded to Fig. 4 (the PDF version of the figure was correct). This has been corrected online.

7.
Nature ; 558(7711): 610-614, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29925952

RESUMEN

Viral infections continue to represent major challenges to public health, and an enhanced mechanistic understanding of the processes that contribute to viral life cycles is necessary for the development of new therapeutic strategies 1 . Viperin, a member of the radical S-adenosyl-L-methionine (SAM) superfamily of enzymes, is an interferon-inducible protein implicated in the inhibition of replication of a broad range of RNA and DNA viruses, including dengue virus, West Nile virus, hepatitis C virus, influenza A virus, rabies virus 2 and HIV3,4. Viperin has been suggested to elicit these broad antiviral activities through interactions with a large number of functionally unrelated host and viral proteins3,4. Here we demonstrate that viperin catalyses the conversion of cytidine triphosphate (CTP) to 3'-deoxy-3',4'-didehydro-CTP (ddhCTP), a previously undescribed biologically relevant molecule, via a SAM-dependent radical mechanism. We show that mammalian cells expressing viperin and macrophages stimulated with IFNα produce substantial quantities of ddhCTP. We also establish that ddhCTP acts as a chain terminator for the RNA-dependent RNA polymerases from multiple members of the Flavivirus genus, and show that ddhCTP directly inhibits replication of Zika virus in vivo. These findings suggest a partially unifying mechanism for the broad antiviral effects of viperin that is based on the intrinsic enzymatic properties of the protein and involves the generation of a naturally occurring replication-chain terminator encoded by mammalian genomes.


Asunto(s)
Antivirales/metabolismo , Citidina Trifosfato/metabolismo , Genoma Humano/genética , Proteínas/genética , Proteínas/metabolismo , Terminación de la Transcripción Genética , Animales , Antivirales/química , Chlorocebus aethiops , Citidina Trifosfato/biosíntesis , Citidina Trifosfato/química , Células HEK293 , Humanos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleótidos , Especificidad por Sustrato , Células Vero , Virus Zika/enzimología , Virus Zika/metabolismo
8.
Science ; 359(6382): 1411-1416, 2018 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-29567715

RESUMEN

Metal homeostasis poses a major challenge to microbes, which must acquire scarce elements for core metabolic processes. Methanobactin, an extensively modified copper-chelating peptide, was one of the earliest natural products shown to enable microbial acquisition of a metal other than iron. We describe the core biosynthetic machinery responsible for the characteristic posttranslational modifications that grant methanobactin its specificity and affinity for copper. A heterodimer comprising MbnB, a DUF692 family iron enzyme, and MbnC, a protein from a previously unknown family, performs a dioxygen-dependent four-electron oxidation of the precursor peptide (MbnA) to install an oxazolone and an adjacent thioamide, the characteristic methanobactin bidentate copper ligands. MbnB and MbnC homologs are encoded together and separately in many bacterial genomes, suggesting functions beyond their roles in methanobactin biosynthesis.


Asunto(s)
Cobre/metabolismo , Methylosinus trichosporium/metabolismo , Oligopéptidos/biosíntesis , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Genoma Bacteriano , Imidazoles/química , Imidazoles/metabolismo , Ligandos , Methylosinus trichosporium/genética , Oligopéptidos/química , Oligopéptidos/genética , Oligopéptidos/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Conformación Proteica en Hélice alfa , Multimerización de Proteína
9.
Biochemistry ; 57(8): 1306-1315, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29405700

RESUMEN

The Radical SAM (RS) enzyme PqqE catalyzes the first step in the biosynthesis of the bacterial cofactor pyrroloquinoline quinone, forming a new carbon-carbon bond between two side chains within the ribosomally synthesized peptide substrate PqqA. In addition to the active site RS 4Fe-4S cluster, PqqE is predicted to have two auxiliary Fe-S clusters, like the other members of the SPASM domain family. Here we identify these sites and examine their structure using a combination of X-ray crystallography and Mössbauer and electron paramagnetic resonance (EPR) spectroscopies. X-ray crystallography allows us to identify the ligands to each of the two auxiliary clusters at the C-terminal region of the protein. The auxiliary cluster nearest the RS site (AuxI) is in the form of a 2Fe-2S cluster ligated by four cysteines, an Fe-S center not seen previously in other SPASM domain proteins; this assignment is further supported by Mössbauer and EPR spectroscopies. The second, more remote cluster (AuxII) is a 4Fe-4S center that is ligated by three cysteine residues and one aspartate residue. In addition, we examined the roles these ligands play in catalysis by the RS and AuxII clusters using site-directed mutagenesis coupled with EPR spectroscopy. Lastly, we discuss the possible functional consequences that these unique AuxI and AuxII clusters may have in catalysis for PqqE and how these may extend to additional RS enzymes catalyzing the post-translational modification of ribosomally encoded peptides.


Asunto(s)
Proteínas Bacterianas/química , Endopeptidasas/química , Proteínas Hierro-Azufre/química , Methylobacterium extorquens/química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Conformación Proteica , Temperatura
10.
J Struct Funct Genomics ; 14(2): 31-5, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23535894

RESUMEN

Import-Karyopherin or Importin proteins bind nuclear localization signals (NLSs) to mediate the import of proteins into the cell nucleus. Karyopherin ß2 or Kapß2, also known as Transportin, is a member of this transporter family responsible for the import of numerous RNA binding proteins. Kapß2 recognizes a targeting signal termed the PY-NLS that lies within its cargos to target them through the nuclear pore complex. The recognition of PY-NLS by Kapß2 is conserved throughout eukaryotes. Kap104, the Kapß2 homolog in Saccharomyces cerevisiae, recognizes PY-NLSs in cargos Nab2, Hrp1, and Tfg2. We have determined the crystal structure of Kapß2 bound to the PY-NLS of the mRNA processing protein Nab2 at 3.05-Å resolution. A seven-residue segment of the PY-NLS of Nab2 is observed to bind Kapß2 in an extended conformation and occupies the same PY-NLS binding site observed in other Kapß2·PY-NLS structures.


Asunto(s)
Señales de Localización Nuclear/química , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , beta Carioferinas/química , Secuencia de Aminoácidos , Sitios de Unión , Núcleo Celular/metabolismo , Cristalografía por Rayos X , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Señales de Localización Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , beta Carioferinas/metabolismo
11.
Structure ; 20(5): 911-23, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22579256

RESUMEN

Calmodulin is a prototypical and versatile Ca(2+) sensor with EF hands as its high-affinity Ca(2+) binding domains. Calmodulin is present in all eukaryotic cells, mediating Ca(2+)-dependent signaling. Upon binding Ca(2+), calmodulin changes its conformation to form complexes with a diverse array of target proteins. Despite a wealth of knowledge on calmodulin, little is known on how target proteins regulate calmodulin's ability to bind Ca(2+). Here, we take advantage of two splice variants of SK2 channels, which are activated by Ca(2+)-bound calmodulin but show different sensitivity to Ca(2+) for their activation. Protein crystal structures and other experiments show that, depending on which SK2 splice variant it binds to, calmodulin adopts drastically different conformations with different affinities for Ca(2+) at its C-lobe. Such target protein-induced conformational changes make calmodulin a dynamic Ca(2+) sensor capable of responding to different Ca(2+) concentrations in cellular Ca(2+) signaling.


Asunto(s)
Calcio/metabolismo , Calmodulina/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calmodulina/metabolismo , Datos de Secuencia Molecular , Conformación Proteica , Ratas , Transducción de Señal , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/química , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...