Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 17(6): e3000297, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31199786

RESUMEN

Posttranscriptional modifications in transfer RNA (tRNA) are often critical for normal development because they adapt protein synthesis rates to a dynamically changing microenvironment. However, the precise cellular mechanisms linking the extrinsic stimulus to the intrinsic RNA modification pathways remain largely unclear. Here, we identified the cytosine-5 RNA methyltransferase NSUN2 as a sensor for external stress stimuli. Exposure to oxidative stress efficiently repressed NSUN2, causing a reduction of methylation at specific tRNA sites. Using metabolic profiling, we showed that loss of tRNA methylation captured cells in a distinct catabolic state. Mechanistically, loss of NSUN2 altered the biogenesis of tRNA-derived noncoding fragments (tRFs) in response to stress, leading to impaired regulation of protein synthesis. The intracellular accumulation of a specific subset of tRFs correlated with the dynamic repression of global protein synthesis. Finally, NSUN2-driven RNA methylation was functionally required to adapt cell cycle progression to the early stress response. In summary, we revealed that changes in tRNA methylation profiles were sufficient to specify cellular metabolic states and efficiently adapt protein synthesis rates to cell stress.


Asunto(s)
ADN-Citosina Metilasas/metabolismo , Metiltransferasas/metabolismo , Animales , Línea Celular , Citosina/metabolismo , Metilación de ADN/fisiología , ADN-Citosina Metilasas/fisiología , Humanos , Ratones , Estrés Oxidativo/fisiología , Biosíntesis de Proteínas/fisiología , ARN/metabolismo , ARN de Transferencia/metabolismo
2.
Nature ; 534(7607): 335-40, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27306184

RESUMEN

Whether protein synthesis and cellular stress response pathways interact to control stem cell function is currently unknown. Here we show that mouse skin stem cells synthesize less protein than their immediate progenitors in vivo, even when forced to proliferate. Our analyses reveal that activation of stress response pathways drives both a global reduction of protein synthesis and altered translational programmes that together promote stem cell functions and tumorigenesis. Mechanistically, we show that inhibition of post-transcriptional cytosine-5 methylation locks tumour-initiating cells in this distinct translational inhibition programme. Paradoxically, this inhibition renders stem cells hypersensitive to cytotoxic stress, as tumour regeneration after treatment with 5-fluorouracil is blocked. Thus, stem cells must revoke translation inhibition pathways to regenerate a tissue or tumour.


Asunto(s)
Biosíntesis de Proteínas , Células Madre/fisiología , Estrés Fisiológico , Animales , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Citosina/metabolismo , Femenino , Fluorouracilo/farmacología , Folículo Piloso/citología , Folículo Piloso/metabolismo , Humanos , Masculino , Metilación , Metiltransferasas/deficiencia , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Regeneración , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Células Madre/citología , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...