Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cancer Cell ; 42(2): 266-282.e8, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38278150

RESUMEN

Adenosine (Ado) mediates immune suppression in the tumor microenvironment and exhausted CD8+ CAR-T cells express CD39 and CD73, which mediate proximal steps in Ado generation. Here, we sought to enhance CAR-T cell potency by knocking out CD39, CD73, or adenosine receptor 2a (A2aR) but observed only modest effects. In contrast, overexpression of Ado deaminase (ADA-OE), which metabolizes Ado to inosine (INO), induced stemness and enhanced CAR-T functionality. Similarly, CAR-T cell exposure to INO augmented function and induced features of stemness. INO induced profound metabolic reprogramming, diminishing glycolysis, increasing mitochondrial and glycolytic capacity, glutaminolysis and polyamine synthesis, and reprogrammed the epigenome toward greater stemness. Clinical scale manufacturing using INO generated enhanced potency CAR-T cell products meeting criteria for clinical dosing. These results identify INO as a potent modulator of CAR-T cell metabolism and epigenetic stemness programming and deliver an enhanced potency platform for cell manufacturing.


Asunto(s)
Inosina , Linfocitos T , Humanos , Linfocitos T/metabolismo
2.
Mol Cancer ; 22(1): 100, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365642

RESUMEN

BACKGROUND: Chimeric Antigen Receptor (CAR) T cells are now standard of care (SOC) for some patients with B cell and plasma cell malignancies and could disrupt the therapeutic landscape of solid tumors. However, access to CAR-T cells is not adequate to meet clinical needs, in part due to high cost and long lead times for manufacturing clinical grade virus. Non-viral site directed CAR integration can be accomplished using CRISPR/Cas9 and double-stranded DNA (dsDNA) or single-stranded DNA (ssDNA) via homology-directed repair (HDR), however yields with this approach have been limiting for clinical application (dsDNA) or access to large yields sufficient to meet the manufacturing demands outside early phase clinical trials is limited (ssDNA). METHODS: We applied homology-independent targeted insertion (HITI) or HDR using CRISPR/Cas9 and nanoplasmid DNA to insert an anti-GD2 CAR into the T cell receptor alpha constant (TRAC) locus and compared both targeted insertion strategies in our system. Next, we optimized post-HITI CRISPR EnrichMENT (CEMENT) to seamlessly integrate it into a 14-day process and compared our knock-in with viral transduced anti-GD2 CAR-T cells. Finally, we explored the off-target genomic toxicity of our genomic engineering approach. RESULTS: Here, we show that site directed CAR integration utilizing nanoplasmid DNA delivered via HITI provides high cell yields and highly functional cells. CEMENT enriched CAR T cells to approximately 80% purity, resulting in therapeutically relevant dose ranges of 5.5 × 108-3.6 × 109 CAR + T cells. CRISPR knock-in CAR-T cells were functionally comparable with viral transduced anti-GD2 CAR-T cells and did not show any evidence of off-target genomic toxicity. CONCLUSIONS: Our work provides a novel platform to perform guided CAR insertion into primary human T-cells using nanoplasmid DNA and holds the potential to increase access to CAR-T cell therapies.


Asunto(s)
ADN , Linfocitos T , Humanos , Reparación del ADN por Recombinación , Inmunoterapia Adoptiva
3.
bioRxiv ; 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37162847

RESUMEN

Adenosine (Ado) mediates immune suppression in the tumor microenvironment and exhausted CD8+ CAR T cells mediate Ado-induced immunosuppression through CD39/73-dependent Ado production. Knockout of CD39, CD73 or A2aR had modest effects on exhausted CAR T cells, whereas overexpression of Ado deaminase (ADA), which metabolizes Ado to inosine (INO), induced stemness features and potently enhanced functionality. Similarly, and to a greater extent, exposure of CAR T cells to INO augmented CAR T cell function and induced hallmark features of T cell stemness. INO induced a profound metabolic reprogramming, diminishing glycolysis and increasing oxidative phosphorylation, glutaminolysis and polyamine synthesis, and modulated the epigenome toward greater stemness. Clinical scale manufacturing using INO generated enhanced potency CAR T cell products meeting criteria for clinical dosing. These data identify INO as a potent modulator of T cell metabolism and epigenetic stemness programming and deliver a new enhanced potency platform for immune cell manufacturing.

4.
J Transl Med ; 19(1): 523, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34952597

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) or T-cell receptor (TCR) engineered T-cell therapy has recently emerged as a promising adoptive immunotherapy approach for the treatment of hematologic malignancies and solid tumors. Multiparametric flow cytometry-based assays play a critical role in monitoring cellular manufacturing steps. Since manufacturing CAR/TCR T-cell products must be in compliance with current good manufacturing practices (cGMP), a standard or quality control for flow cytometry assays should be used to ensure the accuracy of flow cytometry results, but none is currently commercially available. Therefore, we established a procedure to generate an in-house cryopreserved CAR/TCR T-cell products for use as a flow cytometry quality control and validated their use. METHODS: Two CAR T-cell products: CD19/CD22 bispecific CAR T-cells and FGFR4 CAR T-cells and one TCR-engineered T-cell product: KK-LC-1 TCR T-cells were manufactured in Center for Cellular Engineering (CCE), NIH Clinical Center. The products were divided in aliquots, cryopreserved and stored in the liquid nitrogen. The cryopreserved flow cytometry quality controls were tested in flow cytometry assays which measured post-thaw viability, CD3, CD4 and CD8 frequencies as well as the transduction efficiency and vector identity. The long-term stability and shelf-life of cryopreserved quality control cells were evaluated. In addition, the sensitivity as well as the precision assay were also assessed on the cryopreserved quality control cells. RESULTS: After thawing, the viability of the cryopreserved CAR/TCR T-cell controls was found to be greater than 50%. The expression of transduction efficiency and vector identity markers by the cryopreserved control cells were stable for at least 1 year; with post-thaw values falling within ± 20% range of the values measured at time of cryopreservation. After thawing and storage at room temperature, the stability of these cryopreserved cells lasted at least 6 h. In addition, our cryopreserved CAR/TCR-T cell quality controls showed a strong correlation between transduction efficiency expression and dilution factors. Furthermore, the results of flow cytometric analysis of the cryopreserved cells among different laboratory technicians and different flow cytometry instruments were comparable, highlighting the reproducibility and reliability of these quality control cells. CONCLUSION: We developed and validated a feasible and reliable procedure to establish a bank of cryopreserved CAR/TCR T-cells for use as flow cytometry quality controls, which can serve as a quality control standard for in-process and lot-release testing of CAR/TCR T-cell products.


Asunto(s)
Receptores Quiméricos de Antígenos , Criopreservación/métodos , Citometría de Flujo/métodos , Inmunoterapia Adoptiva/métodos , Control de Calidad , Receptores de Antígenos de Linfocitos T , Reproducibilidad de los Resultados , Linfocitos T
5.
Nat Med ; 27(8): 1419-1431, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34312556

RESUMEN

Despite impressive progress, more than 50% of patients treated with CD19-targeting chimeric antigen receptor T cells (CAR19) experience progressive disease. Ten of 16 patients with large B cell lymphoma (LBCL) with progressive disease after CAR19 treatment had absent or low CD19. Lower surface CD19 density pretreatment was associated with progressive disease. To prevent relapse with CD19- or CD19lo disease, we tested a bispecific CAR targeting CD19 and/or CD22 (CD19-22.BB.z-CAR) in a phase I clinical trial ( NCT03233854 ) of adults with relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL) and LBCL. The primary end points were manufacturing feasibility and safety with a secondary efficacy end point. Primary end points were met; 97% of products met protocol-specified dose and no dose-limiting toxicities occurred during dose escalation. In B-ALL (n = 17), 100% of patients responded with 88% minimal residual disease-negative complete remission (CR); in LBCL (n = 21), 62% of patients responded with 29% CR. Relapses were CD19-/lo in 50% (5 out of 10) of patients with B-ALL and 29% (4 out of 14) of patients with LBCL but were not associated with CD22-/lo disease. CD19/22-CAR products demonstrated reduced cytokine production when stimulated with CD22 versus CD19. Our results further implicate antigen loss as a major cause of CAR T cell resistance, highlight the challenge of engineering multi-specific CAR T cells with equivalent potency across targets and identify cytokine production as an important quality indicator for CAR T cell potency.


Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva , Linfoma de Células B/terapia , Lectina 2 Similar a Ig de Unión al Ácido Siálico/inmunología , Adulto , Anciano , Progresión de la Enfermedad , Humanos , Inmunoterapia Adoptiva/efectos adversos , Linfoma de Células B/inmunología , Persona de Mediana Edad , Recurrencia
6.
Nat Med ; 27(3): 419-425, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33558725

RESUMEN

Genetically engineered T cell therapy can induce remarkable tumor responses in hematologic malignancies. However, it is not known if this type of therapy can be applied effectively to epithelial cancers, which account for 80-90% of human malignancies. We have conducted a first-in-human, phase 1 clinical trial of T cells engineered with a T cell receptor targeting HPV-16 E7 for the treatment of metastatic human papilloma virus-associated epithelial cancers (NCT02858310). The primary endpoint was maximum tolerated dose. Cell dose was not limited by toxicity with a maximum dose of 1 × 1011 engineered T cells administered. Tumor responses following treatment were evaluated using RECIST (Response Evaluation Criteria in Solid Tumors) guidelines. Robust tumor regression was observed with objective clinical responses in 6 of 12 patients, including 4 of 8 patients with anti-PD-1 refractory disease. Responses included extensive regression of bulky tumors and complete regression of most tumors in some patients. Genomic studies, which included intra-patient tumors with dichotomous treatment responses, revealed resistance mechanisms from defects in critical components of the antigen presentation and interferon response pathways. These findings demonstrate that engineered T cells can mediate regression of common carcinomas, and they reveal immune editing as a constraint on the curative potential of cellular therapy and possibly other immunotherapies in advanced epithelial cancer.


Asunto(s)
Neoplasias Glandulares y Epiteliales/patología , Papillomaviridae/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Línea Celular Tumoral , Humanos , Metástasis de la Neoplasia , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Glandulares y Epiteliales/virología
7.
J Transl Med ; 18(1): 191, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32384903

RESUMEN

BACKGROUND: Genetically engineered T cells have become an important therapy for B-cell malignancies. Measuring the efficiency of vector integration into the T cell genome is important for assessing the potency and safety of these cancer immunotherapies. METHODS: A digital droplet polymerase chain reaction (ddPCR) assay was developed and evaluated for assessing the average number of lenti- and retroviral vectors integrated into Chimeric Antigen Receptor (CAR) and T Cell Receptor (TCR)-engineered T cells. RESULTS: The ddPCR assay consistently measured the concentration of an empty vector in solution and the average number of CAR and TCR vectors integrated into T cell populations. There was a linear relationship between the average vector copy number per cell measured by ddPCR and the proportion of cells transduced as measured by flow cytometry. Similar vector copy number measurements were obtained by different staff using the ddPCR assay, highlighting the assays reproducibility among technicians. Analysis of fresh and cryopreserved CAR T and TCR engineered T cells yielded similar results. CONCLUSIONS: ddPCR is a robust tool for accurate quantitation of average vector copy number in CAR and TCR engineered T cells. The assay is also applicable to other types of genetically engineered cells including Natural Killer cells and hematopoietic stem cells.


Asunto(s)
Receptores Quiméricos de Antígenos , Variaciones en el Número de Copia de ADN/genética , Humanos , Inmunoterapia Adoptiva , Reacción en Cadena de la Polimerasa , Receptores Quiméricos de Antígenos/genética , Reproducibilidad de los Resultados , Linfocitos T
8.
J Immunother Cancer ; 7(1): 229, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31455429

RESUMEN

T cell receptor (TCR) gene-engineered T cells have shown promise in the treatment of melanoma and synovial cell sarcoma, but their application to epithelial cancers has been limited. The identification of novel therapeutic TCRs for the targeting of these tumors is important for the development of new treatments. Here, we describe the preclinical characterization of a TCR directed against Kita-Kyushu Lung Cancer Antigen-1 (KK-LC-1, encoded by CT83), a cancer germline antigen with frequent expression in human epithelial malignancies including gastric cancer, breast cancer, and lung cancer. Gene-engineered T cells expressing the KK-LC-1 TCR (KK-LC-1 TCR-Ts) demonstrated recognition of CT83+ tumor lines in vitro and mediated regression of established CT83+ xenograft tumors in immunodeficient mouse models. Cross-reactivity studies based on experimental determination of the recognition motifs for the target epitope did not demonstrate cross-reactivity against other human proteins. CT83 gene expression studies in 51 non-neural tissues and 24 neural tissues showed expression restricted exclusively to germ cells. CT83 was however expressed by a range of epithelial cancers, with the highest expression noted in gastric cancer. Collectively, these findings support the further investigation and clinical testing of KK-LC-1 TCR-Ts for gastric cancer and possibly other malignancies.


Asunto(s)
Antígenos de Neoplasias/inmunología , Genes Codificadores de los Receptores de Linfocitos T/genética , Neoplasias Pulmonares/terapia , Melanoma/terapia , Neoplasias Gástricas/terapia , Linfocitos T/trasplante , Neoplasias del Cuello Uterino/terapia , Adenocarcinoma/genética , Adenocarcinoma/inmunología , Adenocarcinoma/terapia , Animales , Apoptosis , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Melanoma/genética , Melanoma/inmunología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Gástricas/genética , Neoplasias Gástricas/inmunología , Linfocitos T/inmunología , Células Tumorales Cultivadas , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Transl Med ; 16(1): 13, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29368612

RESUMEN

BACKGROUND: Genetic engineering of T-cells to express specific T cell receptors (TCR) has emerged as a novel strategy to treat various malignancies. More widespread utilization of these types of therapies has been somewhat constrained by the lack of closed culture processes capable of expanding sufficient numbers of T-cells for clinical application. Here, we evaluate a process for robust clinical grade manufacturing of TCR gene engineered T-cells. METHODS: TCRs that target human papillomavirus E6 and E7 were independently tested. A 21 day process was divided into a transduction phase (7 days) and a rapid expansion phase (14 days). This process was evaluated using two healthy donor samples and four samples obtained from patients with epithelial cancers. RESULTS: The process resulted in ~ 2000-fold increase in viable nucleated cells and high transduction efficiencies (64-92%). At the end of culture, functional assays demonstrated that these cells were potent and specific in their ability to kill tumor cells bearing target and secrete large quantities of interferon and tumor necrosis factor. Both phases of culture were contained within closed or semi-closed modules, which include automated density gradient separation and cell culture bags for the first phase and closed GREX culture devices and wash/concentrate systems for the second phase. CONCLUSION: Large-scale manufacturing using modular systems and semi-automated devices resulted in highly functional clinical-grade TCR transduced T-cells. This process is now in use in actively accruing clinical trials and the NIH Clinical Center and can be utilized at other cell therapy manufacturing sites that wish to scale-up and optimize their processing using closed systems.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo , Transducción Genética , Proliferación Celular , Supervivencia Celular , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Activación de Linfocitos/inmunología , Papillomaviridae/metabolismo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA