Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 202: 116298, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581733

RESUMEN

As plastic pollution continues to accumulate at the seafloor, concerns around benthic ecosystem functionality heightens. This research demonstrates the systematic effects of polyester microfibers on seafloor organic matter consumption rates, an important benthic ecosystem function connected to multiple reactions and processes. We used a field-based assay to measure the loss of organic matter, both with and without polyester microfiber contamination. We identified sediment organic matter content, mud content, and mean grain size as the main drivers of organic matter consumption, however, polyester microfiber contamination decoupled ecosystem relationships and altered observed organic matter cycling dynamics. Organic matter consumption rates varied across horizontal and vertical spaces, highlighting that consumption and associated plastic effects are dependent on environmental heterogeneity at both small (within sites) and larger (between sites) scales. Our results emphasize the important role habitat heterogeneity plays in seafloor organic matter consumption and the associated effects of plastic pollution on ecosystem function.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Plásticos , Poliésteres , Contaminantes Químicos del Agua , Sedimentos Geológicos/química , Poliésteres/análisis , Contaminantes Químicos del Agua/análisis , Plásticos/análisis
2.
J Environ Manage ; 346: 119007, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37742568

RESUMEN

Environmental management in coastal ecosystems has been challenged by the complex cumulative effects that occur when many small issues result in large ecological shifts. Current environmental management of these spaces focuses on identifying and limiting problematic stressors via a series of assessment techniques. Whilst there is a strong desire among managers to consider complexity in ecological responses to cumulative effects, current approaches for assessing risk focus on breaking down the issues into multiple cause and effect relationships. However, uncertainty arises when data and information for a place are limited, as is commonly the case, and this creates decision paralysis while more information is generated. Here, we discuss how ecological understanding of network interactions in coastal marine ecosystems can be used as a lens to bring together multiple lines of evidence and create actions. We list and describe four characteristics of marine ecosystem interaction networks including the possibility for; 1) indirect effects, 2) effects that emerge as stressor magnitude increases the number of network components implicated, 3) network interactions that amplify these indirect effects, and 4) feedbacks that reinforce or stabilise against indirect effects. We then link these four characteristics to three case studies of common coastal environmental issues to demonstrate how a general understanding of ecological interaction networks can enhance priorities for stressor management that can be applied even when specific data is limited.


Asunto(s)
Ecosistema
3.
Proc Biol Sci ; 290(1998): 20230403, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37132238

RESUMEN

Response diversity increases the potential 'options' for ecological communities to respond to stress (i.e. response capacity). An indicator of community response diversity is the diversity of different traits associated with their capacity to be resistant to stress, to recover and to regulate ecosystem functions. We conducted a network analysis of traits using benthic macroinvertebrate community data from a large-scale field experiment to explore the loss of response diversity along environmental gradients. We elevated sediment nutrient concentrations (a process that occurs with eutrophication) at 24 sites (in 15 estuaries) with varying environmental conditions (water column turbidity and sediment properties). Macroinvertebrate community response capacity to nutrient stress was dependent on the baseline trait network complexity in the ambient community (i.e. non-enriched sediments). The greater the complexity of the baseline network, the less variable the network response to nutrient stress was; in contrast, more variable responses to nutrient stress occurred with simpler networks. Thus, stressors or environmental variables that shift baseline network complexity also shift the capacity for these ecosystems to respond to additional stressors. Empirical studies that explore the mechanisms responsible for loss of resilience are essential to inform our ability to predict changes in ecological states.


Asunto(s)
Ecosistema , Sedimentos Geológicos , Sedimentos Geológicos/análisis , Biota , Estuarios , Eutrofización , Monitoreo del Ambiente
4.
Ecol Evol ; 11(11): 6091-6103, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34141205

RESUMEN

Despite a long history of disturbance-recovery research, we still lack a generalizable understanding of the attributes that drive community recovery potential in seafloor ecosystems. Marine soft-sediment ecosystems encompass a range of heterogeneity from simple low-diversity habitats with limited biogenic structure, to species-rich systems with complex biogenic habitat structure. These differences in biological heterogeneity are a product of natural conditions and disturbance regimes. To search for unifying attributes, we explore whether a set of simple traits can characterize community disturbance-recovery potential using seafloor patch-disturbance experiments conducted in two different soft-sediment landscapes. The two landscapes represent two ends of a spectrum of landscape biotic heterogeneity in order to consider multi-scale disturbance-recovery processes. We consider traits at different levels of biological organization, from the biological traits of individual species, to the traits of species at the landscape scale associated with their occurrence across the landscape and their ability to be dominant. We show that in a biotically heterogeneous landscape (Kawau Bay, New Zealand), seafloor community recovery is stochastic, there is high species turnover, and the landscape-scale traits are good predictors of recovery. In contrast, in a biotically homogeneous landscape (Baltic Sea), the options for recovery are constrained, the recovery pathway is thus more deterministic and the scale of recovery traits important for determining recovery switches to the individual species biological traits within the disturbed patch. Our results imply that these simple, yet sophisticated, traits can be effectively used to characterize community recovery potential and highlight the role of landscapes in providing resilience to patch-scale disturbances.

5.
Ecol Appl ; 31(1): e02223, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32869444

RESUMEN

Marine ecosystems are prone to tipping points, particularly in coastal zones where dramatic changes are associated with interactions between cumulative stressors (e.g., shellfish harvesting, eutrophication and sediment inputs) and ecosystem functions. A common feature of many degraded estuaries is elevated turbidity that reduces incident light to the seafloor, resulting from multiple factors including changes in sediment loading, sea-level rise and increased water column algal biomass. To determine whether cumulative effects of elevated turbidity may result in marked changes in the interactions between ecosystem components driving nutrient processing, we conducted a large-scale experiment manipulating sediment nitrogen concentrations in 15 estuaries across a national-scale gradient in incident light at the seafloor. We identified a threshold in incident light that was related to distinct changes in the ecosystem interaction networks (EIN) that drive nutrient processing. Above this threshold, network connectivity was high with clear mechanistic links to denitrification and the role of large shellfish in nitrogen processing. The EIN analyses revealed interacting stressors resulting in a decoupling of ecosystem processes in turbid estuaries with a lower capacity to denitrify and process nitrogen. This suggests that, as turbidity increases with sediment load, coastal areas can be more vulnerable to eutrophication. The identified interactions between light, nutrient processing and the abundance of large shellfish emphasizes the importance of actions that seek to manage multiple stressors and conserve or enhance shellfish abundance, rather than actions focusing on limiting a single stressor.


Asunto(s)
Ecosistema , Estuarios , Biomasa , Eutrofización , Nitrógeno
6.
Trends Ecol Evol ; 34(12): 1080-1091, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31422892

RESUMEN

Under globally accelerating rates of ecosystem degradation, maintaining ecosystem function is a priority to avoid loss of valuable ecosystem services. Two factors are important: changes to the disturbance regime (stresses imposed) and resilience of biodiversity and ecosystem functions (the ecosystem's capacity to respond to change). Various attributes at different scales of ecological organisation confer resilience (from individual species to communities at landscape scales), but it is critical to understand how these attributes interact to inform how ecosystem function changes with disturbances that vary in intensity, spatial extent, and frequency. Individual species attributes influence their resistance, while attributes at the landscape-scale influence recovery of communities and function. Understanding resilience to disturbances requires defining the characteristics of a resilient community at multiple scales.


Asunto(s)
Ecología , Ecosistema , Biodiversidad , Fenotipo
7.
PLoS One ; 11(5): e0154790, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27138563

RESUMEN

Detrital subsidies from marine macrophytes are prevalent in temperate estuaries, and their role in structuring benthic macrofaunal communities is well documented, but the resulting impact on ecosystem function is not understood. We conducted a field experiment to test the effects of detrital decay on soft-sediment primary production, community metabolism and nutrient regeneration (measures of ecosystem function). Twenty four (2 m(2)) plots were established on an intertidal sandflat, to which we added 0 or 220 g DW m(-2) of detritus from either mangroves (Avicennia marina), seagrass (Zostera muelleri), or kelp (Ecklonia radiata) (n = 6 plots per treatment). Then, after 4, 17 and 46 d we measured ecosystem function, macrofaunal community structure and sediment properties. We hypothesized that (1) detrital decay would stimulate benthic primary production either by supplying nutrients to the benthic macrophytes, or by altering the macrofaunal community; and (2) ecosystem responses would depend on the stage and rate of macrophyte decay (a function of source). Avicennia detritus decayed the slowest with a half-life (t50) of 46 d, while Zostera and Ecklonia had t50 values of 28 and 2.6 d, respectively. However, ecosystem responses were not related to these differences. Instead, we found transient effects (up to 17 d) of Avicennia and Ecklonia detritus on benthic primary production, where initially (4 d) these detrital sources suppressed primary production, but after 17 d, primary production was stimulated in Avicennia plots relative to controls. Other ecosystem function response variables and the macrofaunal community composition were not altered by the addition of detritus, but did vary with time. By sampling ecosystem function temporally, we were able to capture the in situ transient effects of detrital subsidies on important benthic ecosystem functions.


Asunto(s)
Organismos Acuáticos/crecimiento & desarrollo , Ecosistema , Sedimentos Geológicos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA