Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMJ Case Rep ; 16(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36948523

RESUMEN

Plasma donation has been widely used to recover medically vital components, such as immunoglobulins and clotting factors. Although generally well tolerated, there have been reports in the medical literature of reactions following blood and plasma donation. We present the first case, to our knowledge, of lower extremity oedema as the only complication noted following plasma donation in an adolescent female without underlying risk factors. Laboratory evaluation was unremarkable with the exception of decreased total serum protein. Symptoms resolved with conservative management and avoidance of plasma donation. Our case highlights the importance of screening for all sources of income in adolescents to assess for health disparities, evaluate risk factors and provide appropriate guidance.


Asunto(s)
Donación de Sangre , Edema , Humanos , Adolescente , Femenino , Factores de Riesgo , Edema/etiología
2.
Can J Physiol Pharmacol ; 98(9): 579-586, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32437627

RESUMEN

Previously, we showed that global knockout (KO) of the circadian clock transcription factor PER1 in male, but not female, mice fed a high-salt diet plus mineralocorticoid treatment (HS/DOCP) resulted in nondipping hypertension and decreased night/day ratio of sodium (Na) excretion. Additionally, we have shown that the endothelin-1 (ET-1) gene is targeted by both PER1 and aldosterone. We hypothesized that ET-1 would exhibit a sex-specific response to HS/DOCP treatment in PER1 KO. Here we show that male, but not female, global PER1 KO mice exhibit a decreased night/day ratio of urinary ET-1. Gene expression analysis revealed significant genotype differences in ET-1 and endothelin A receptor (ETA) expression in male, but not female, mice in response to HS/DOCP. Additionally, both wild-type and global PER1 KO male mice significantly increase endothelin B receptor (ETB) expression in response to HS/DOCP, but female mice do not. Finally, siRNA-mediated knockdown of PER1 in mouse cortical collecting duct cells (mpkCCDc14) resulted in increased ET-1 mRNA expression and peptide secretion in response to aldosterone treatment. These data suggest that PER1 is a negative regulator of ET-1 expression in response to HS/DOCP, revealing a novel mechanism for the regulation of renal Na handling in response to HS/DOCP treatment.


Asunto(s)
Endotelina-1/metabolismo , Hipertensión/metabolismo , Túbulos Renales Colectores/fisiopatología , Proteínas Circadianas Period/metabolismo , Eliminación Renal/fisiología , Aldosterona/administración & dosificación , Aldosterona/efectos adversos , Animales , Relojes Circadianos/fisiología , Modelos Animales de Enfermedad , Endotelina-1/orina , Femenino , Humanos , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Túbulos Renales Colectores/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Proteínas Circadianas Period/genética , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Eliminación Renal/efectos de los fármacos , Factores Sexuales , Cloruro de Sodio Dietético/efectos adversos , Cloruro de Sodio Dietético/metabolismo
3.
Am J Physiol Renal Physiol ; 318(6): F1463-F1477, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32338037

RESUMEN

The renal circadian clock has a major influence on the function of the kidney. Aryl hydrocarbon receptor nuclear translocator-like protein 1 [ARNTL; also known as brain and muscle ARNT-like 1 (BMAL1)] is a core clock protein and transcription factor that regulates the expression of nearly half of all genes. Using male and female kidney-specific cadherin BMAL1 knockout (KS-BMAL1 KO) mice, we examined the role of renal distal segment BMAL1 in blood pressure control and solute handling. We confirmed that this mouse model does not express BMAL1 in thick ascending limb, distal convoluted tubule, and collecting duct cells, which are the final locations for solute and fluid regulation. Male KS-BMAL1 KO mice displayed a substantially lower basal systolic blood pressure compared with littermate control mice, yet their circadian rhythm in pressure remained unchanged [male control mice: 127 ± 0.7 mmHg (n = 4) vs. male KS-BMAL KO mice: 119 ± 2.3 mmHg (n = 5), P < 0.05]. Female mice, however, did not display a genotype difference in basal systolic blood pressure [female control mice: 120 ± 1.6 mmHg (n = 5) vs. female KS-BMAL1 KO mice: 119 ± 1.5 mmHg (n = 7), P = 0.4]. In addition, male KS-BMAL1 KO mice had less Na+ retention compared with control mice in response to a K+-restricted diet (15% less following 5 days of treatment). However, there was no genotype difference in Na+ handling after a K+-restricted diet in female mice. Furthermore, there was evidence indicating a sex-specific response to K+ restriction where female mice reabsorbed less Na+ in response to this dietary challenge compared with male mice. We propose that BMAL1 in the distal nephron and collecting duct contributes to blood pressure regulation and Na+ handling in a sex-specific manner.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Presión Sanguínea , Ritmo Circadiano , Nefronas/metabolismo , Reabsorción Renal , Sodio/metabolismo , Factores de Transcripción ARNTL/deficiencia , Factores de Transcripción ARNTL/genética , Animales , Femenino , Genotipo , Homeostasis , Túbulos Renales Colectores/metabolismo , Masculino , Ratones Noqueados , Fenotipo , Potasio en la Dieta/metabolismo , Factores Sexuales , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA