Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(23): eadj0385, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848354

RESUMEN

Excess gene dosage from chromosome 21 (chr21) causes Down syndrome (DS), spanning developmental and acute phenotypes in terminal cell types. Which phenotypes remain amenable to intervention after development is unknown. To address this question in a model of DS neurogenesis, we derived trisomy 21 (T21) human induced pluripotent stem cells (iPSCs) alongside, otherwise, isogenic euploid controls from mosaic DS fibroblasts and equipped one chr21 copy with an inducible XIST transgene. Monoallelic chr21 silencing by XIST is near-complete and irreversible in iPSCs. Differential expression reveals that T21 neural lineages and iPSCs share suppressed translation and mitochondrial pathways and activate cellular stress responses. When XIST is induced before the neural progenitor stage, T21 dosage correction suppresses a pronounced skew toward astrogenesis in neural differentiation. Because our transgene remains inducible in postmitotic T21 neurons and astrocytes, we demonstrate that XIST efficiently represses genes even after terminal differentiation, which will empower exploration of cell type-specific T21 phenotypes that remain responsive to chr21 dosage.


Asunto(s)
Diferenciación Celular , Síndrome de Down , Dosificación de Gen , Células Madre Pluripotentes Inducidas , Neurogénesis , ARN Largo no Codificante , Síndrome de Down/genética , Humanos , Neurogénesis/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , ARN Largo no Codificante/genética , Diferenciación Celular/genética , Cromosomas Humanos Par 21/genética , Neuronas/metabolismo
2.
bioRxiv ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-36945647

RESUMEN

Modeling the developmental etiology of viable human aneuploidy can be challenging in rodents due to syntenic boundaries, or primate-specific biology. In humans, monosomy-X (45,X) causes Turner syndrome (TS), altering craniofacial, skeletal, endocrine, and cardiovascular development, which in contrast remain unaffected in 39,X-mice. To learn how human monosomy-X may impact early embryonic development, we turned to human 45,X and isogenic euploid induced pluripotent stem cells (hiPSCs) from male and female mosaic donors. Because neural crest (NC) derived cell types are hypothesized to underpin craniofacial and cardiovascular changes in TS, we performed a highly-powered differential expression study on hiPSC-derived anterior neural crest cells (NCCs). Across three independent isogenic panels, 45,X NCCs show impaired acquisition of PAX7+SOX10+ markers, and disrupted expression of other NCC-specific genes, relative to their isogenic euploid controls. In particular, 45,X NCCs increase cholesterol biosynthesis genes while reducing transcripts that feature 5' terminal oligopyrimidine (TOP) motifs, including those of ribosomal protein and nuclear-encoded mitochondrial genes. Such metabolic pathways are also over-represented in weighted co-expression gene modules that are preserved in monogenic neurocristopathy. Importantly, these gene modules are also significantly enriched in 28% of all TS-associated terms of the human phenotype ontology. Our analysis identifies specific sex-linked genes that are expressed from two copies in euploid males and females alike and qualify as candidate haploinsufficient drivers of TS phenotypes in NC-derived lineages. This study demonstrates that isogenic hiPSC-derived NCC panels representing monosomy-X can serve as a powerful model of early NC development in TS and inform new hypotheses towards its etiology.

3.
Proc Natl Acad Sci U S A ; 119(40): e2211073119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161909

RESUMEN

Mammalian sex chromosomes encode homologous X/Y gene pairs that were retained on the Y chromosome in males and escape X chromosome inactivation (XCI) in females. Inferred to reflect X/Y pair dosage sensitivity, monosomy X is a leading cause of miscarriage in humans with near full penetrance. This phenotype is shared with many other mammals but not the mouse, which offers sophisticated genetic tools to generate sex chromosomal aneuploidy but also tolerates its developmental impact. To address this critical gap, we generated X-monosomic human induced pluripotent stem cells (hiPSCs) alongside otherwise isogenic euploid controls from male and female mosaic samples. Phased genomic variants in these hiPSC panels enable systematic investigation of X/Y dosage-sensitive features using in vitro models of human development. Here, we demonstrate the utility of these validated hiPSC lines to test how X/Y-linked gene dosage impacts a widely used model for human syncytiotrophoblast development. While these isogenic panels trigger a GATA2/3- and TFAP2A/C-driven trophoblast gene circuit irrespective of karyotype, differential expression implicates monosomy X in altered levels of placental genes and in secretion of placental growth factor (PlGF) and human chorionic gonadotropin (hCG). Remarkably, weighted gene coexpression network modules that significantly reflect these changes are also preserved in first-trimester chorionic villi and term placenta. Our results suggest monosomy X may skew trophoblast cell type composition and function, and that the combined haploinsufficiency of the pseudoautosomal region likely plays a key role in these changes.


Asunto(s)
Dosificación de Gen , Células Madre Pluripotentes Inducidas , Trofoblastos , Síndrome de Turner , Animales , Línea Celular , Gonadotropina Coriónica/metabolismo , Cromosomas Humanos X/genética , Femenino , Humanos , Masculino , Ratones , Factor de Crecimiento Placentario/metabolismo , Embarazo , Trofoblastos/metabolismo , Síndrome de Turner/genética
4.
Hum Mol Genet ; 29(19): 3285-3295, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-32977341

RESUMEN

Prader-Willi syndrome (PWS) is characterized by neonatal hypotonia, developmental delay and hyperphagia/obesity. This disorder is caused by the absence of paternally expressed gene products from chromosome 15q11-q13. We previously demonstrated that knocking out ZNF274, a Kruppel-associated box-A-domain zinc finger protein capable of recruiting epigenetic machinery to deposit the H3K9me3 repressive histone modification, can activate expression from the normally silent maternal allele of SNORD116 in neurons derived from PWS induced pluripotent stem cells (iPSCs). However, ZNF274 has many other targets in the genome in addition to SNORD116. Depleting ZNF274 will surely affect the expression of other important genes and disrupt other pathways. Here, we used CRISPR/Cas9 to delete ZNF274 binding sites at the SNORD116 locus to determine whether activation of the maternal copy of SNORD116 could be achieved without altering ZNF274 protein levels. We obtained similar activation of gene expression from the normally silenced maternal allele in neurons derived from PWS iPSCs, compared with ZNF274 knockout, demonstrating that ZNF274 is directly involved in the repression of SNORD116. These results suggest that interfering with ZNF274 binding at the maternal SNORD116 locus is a potential therapeutic strategy for PWS.


Asunto(s)
Células Madre Pluripotentes Inducidas/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Neuronas/patología , Síndrome de Prader-Willi/patología , ARN Mensajero Almacenado/genética , ARN Nucleolar Pequeño/genética , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Neuronas/metabolismo , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo
5.
Hum Mol Genet ; 27(3): 505-515, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29228278

RESUMEN

Prader-Willi syndrome (PWS) is characterized by neonatal hypotonia, developmental delay and hyperphagia/obesity and is caused by the absence of paternal contribution to chromosome 15q11-q13. Using induced pluripotent stem cell (iPSC) models of PWS, we previously discovered an epigenetic complex that is comprised of the zinc-finger protein ZNF274 and the SET domain bifurcated 1 (SETDB1) histone H3 lysine 9 (H3K9) methyltransferase and that silences the maternal alleles at the PWS locus. Here, we have knocked out ZNF274 and rescued the expression of silent maternal alleles in neurons derived from PWS iPSC lines, without affecting DNA methylation at the PWS-Imprinting Center (PWS-IC). This suggests that the ZNF274 complex is a separate imprinting mark that represses maternal PWS gene expression in neurons and is a potential target for future therapeutic applications to rescue the PWS phenotype.


Asunto(s)
Impresión Genómica/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Síndrome de Prader-Willi/metabolismo , Alelos , Animales , Células Cultivadas , Inmunoprecipitación de Cromatina , Metilación de ADN/genética , Epigénesis Genética/genética , Impresión Genómica/fisiología , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Noqueados , Síndrome de Prader-Willi/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...