Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37444550

RESUMEN

Gallbladder cancer (GBC) is a rare pathology in Western countries. However, it constitutes a relevant health problem in Asia and Latin America, with a high mortality in middle-aged Chilean women. The limited therapeutic options for GBC require the identification of targetable proteins with prognostic value for improving clinical management support. We evaluated the expression of targetable proteins, including three epithelial tumor markers, four proteins associated with multidrug and apoptosis resistance, and eleven immunological markers in 241 primary gallbladder adenocarcinomas. We investigated correlations between tumor marker expression, the primary tumor staging, and GBC patients' survival using automated immunohistochemistry, a semi-automatic method for image analysis, univariate and multivariate statistical analyses, and machine learning algorithms. Our data show a significant association between the expression of MRP2 (p = 0.0028), CXCR4 (p = 0.0423), and PD-L1 (p = 0.0264), and a better prognosis for patients with late-stage primary tumors. The expression of the MRP2/CXCR4/PD-L1 cluster of markers discriminates among short-, medium-, and long-term patient survival, with an ROC of significant prognostic value (AUC = 0.85, p = 0.0012). Moreover, a high MRP2/CXCR4/PD-L1 co-expression is associated with increased survival time (30 vs. 6 months, p = 0.0025) in GBC patients, regardless of tumor stage. Hence, our results suggest that the MRP2/CXCR4/PD-L1 cluster could potentially be a prognostic marker for GBC.

2.
Br J Cancer ; 129(4): 572-585, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37355722

RESUMEN

Immunotherapy, particularly those based on immune checkpoint inhibitors (ICIs), has become a useful approach for many neoplastic diseases. Despite the improvements of ICIs in supporting tumour regression and prolonging survival, many patients do not respond or develop resistance to treatment. Thus, therapies that enhance antitumour immunity, such as anticancer vaccines, constitute a feasible and promising therapeutic strategy. Whole tumour cell (WTC) vaccines have been extensively tested in clinical studies as intact or genetically modified cells or tumour lysates, injected directly or loaded on DCs with distinct adjuvants. The essential requirements of WTC vaccines include the optimal delivery of a broad battery of tumour-associated antigens, the presence of tumour cell-derived molecular danger signals, and adequate adjuvants. These factors trigger an early and robust local innate inflammatory response that orchestrates an antigen-specific and proinflammatory adaptive antitumour response capable of controlling tumour growth by several mechanisms. In this review, the strengths and weaknesses of our own and others' experiences in studying WTC vaccines are revised to discuss the essential elements required to increase anticancer vaccine effectiveness.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Vacunas contra el Cáncer/uso terapéutico , Neoplasias/terapia , Antígenos de Neoplasias , Inmunidad , Inmunoterapia
3.
Eur J Immunol ; 51(7): 1715-1731, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33891704

RESUMEN

Hemocyanins are used as immunomodulators in clinical applications because they induce a strong Th1-biased cell-mediated immunity, which has beneficial effects. They are multiligand glycosylated molecules with abundant and complex mannose-rich structures. It remains unclear whether these structures influence hemocyanin-induced immunostimulatory processes in human APCs. We have previously shown that hemocyanin glycans from Concholepas concholepas (CCH), Fissurella latimarginata (FLH), and Megathura crenulata (KLH), participate in their immune recognition and immunogenicity in mice, interacting with murine C-type lectin receptors (CLRs). Here, we studied the interactions of these hemocyanins with two major mannose-binding CLRs on monocyte-derived human DCs: MR (mannose receptor) and DC-SIGN (DC-specific ICAM-3-grabbing nonintegrin). Diverse analyses showed that hemocyanins are internalized by a mannose-sensitive mechanism. This process was calcium dependent. Moreover, hemocyanins colocalized with MR and DC-SIGN, and were partly internalized through clathrin-mediated endocytosis. The hemocyanin-mediated proinflammatory cytokine response was impaired when using deglycosylated FLH and KLH compared to CCH. We further showed that hemocyanins bind to human MR and DC-SIGN in a carbohydrate-dependent manner with affinity constants in the physiological concentration range. Overall, we showed that these three clinically valuable hemocyanins interact with human mannose-sensitive CLRs, initiating an immune response and promoting a Th1 cell-driving potential.


Asunto(s)
Moléculas de Adhesión Celular/inmunología , Células Dendríticas/inmunología , Hemocianinas/inmunología , Factores Inmunológicos/inmunología , Lectinas Tipo C/inmunología , Lectinas de Unión a Manosa/inmunología , Receptores de Superficie Celular/inmunología , Animales , Células CHO , Línea Celular Tumoral , Células Cultivadas , Cricetulus , Humanos , Inmunidad Celular/inmunología , Inmunización/métodos , Receptor de Manosa , Monocitos/inmunología , Células U937
4.
J Immunother Cancer ; 8(2)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32690772

RESUMEN

BACKGROUND: Immune checkpoint blocker (ICB) therapy has shown survival benefits for some patients with cancer. Nevertheless, many individuals remain refractory or acquire resistance to treatment, motivating the exploration of complementary immunotherapies. Accordingly, cancer vaccines offer an attractive alternative. Optimal delivery of multiple tumor-associated antigens combined with potent adjuvants seems to be crucial for vaccine effectiveness. METHODS: Here, a prototype for a generic melanoma vaccine, named TRIMELVax, was tested using B16F10 mouse melanoma model. This vaccine is made of heat shock-treated tumor cell lysates combined with the Concholepas concholepas hemocyanin as adjuvant. RESULTS: While B16F10 lysate provides appropriate melanoma-associated antigens, both a generic human melanoma cell lysate and hemocyanin adjuvant contributes with danger signals promoting conventional dendritic type 1 cells (cDC1), activation, phagocytosis and effective antigen cross-presentation. TRIMELVax inhibited tumor growth and increased mice survival, inducing cellular and humoral immune responses. Furthermore, this vaccine generated an increased frequency of intratumor cDC1s but not conventional type 2 dendritic cells (cDC2s). Augmented infiltration of CD3+, CD4+ and CD8+ T cells was also observed, compared with anti-programmed cell death protein 1 (PD-1) monotherapy, while TRIMELVax/anti-PD-1 combination generated higher tumor infiltration of CD4+ T cells. Moreover, TRIMELVax promoted an augmented proportion of PD-1lo CD8+ T cells in tumors, a phenotype associated with prototypic effector cells required for tumor growth control, preventing dysfunctional T-cell accumulation. CONCLUSIONS: The therapeutic vaccine TRIMELVax efficiently controls the weakly immunogenic and aggressive B16F10 melanoma tumor growth, prolonging tumor-bearing mice survival even in the absence of ICB. The strong immunogenicity shown by TRIMELVax encourages clinical studies in patients with melanoma.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Inmunoterapia/métodos , Melanoma Experimental/genética , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos NOD
5.
Int J Mol Sci ; 21(10)2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466338

RESUMEN

The immunological synapse (IS) is an intercellular communication platform, organized at the contact site of two adjacent cells, where at least one is an immune cell. Functional IS formation is fundamental for the modulation of the most relevant immune system activities, such as T cell activation by antigen presenting cells and T cell/natural killer (NK) cell-mediated target cell (infected or cancer) killing. Extensive evidence suggests that connexins, in particular connexin-43 (Cx43) hemichannels and/or gap junctions, regulate signaling events in different types of IS. Although the underlying mechanisms are not fully understood, the current evidence suggests that Cx43 channels could act as facilitators for calcium ions, cyclic adenosine monophosphate, and/or adenosine triphosphate uptake and/or release at the interface of interacting cells. These second messengers have relevant roles in the IS signaling during dendritic cell-mediated T and NK cell activation, regulatory T cell-mediated immune suppression, and cytotoxic T lymphocyte or NK cell-mediated target tumor cell killing. Additionally, as the cytoplasmic C-terminus domain of Cx43 interacts with a plethora of proteins, Cx43 may act as scaffolds for integration of various regulatory proteins at the IS, as suggested by the high number of Cx43-interacting proteins that translocate at these cell-cell interface domains. In this review, we provide an updated overview and analysis on the role and possible underlying mechanisms of Cx43 in IS signaling.


Asunto(s)
Conexina 43/metabolismo , Sinapsis Inmunológicas/metabolismo , Animales , Células Dendríticas/inmunología , Humanos , Mapas de Interacción de Proteínas , Transducción de Señal , Linfocitos T/inmunología
6.
Int J Mol Sci ; 20(18)2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31547237

RESUMEN

Upon tumor antigen recognition, cytotoxic T lymphocytes (CTLs) and target cells form specialized supramolecular structures, called cytotoxic immunological synapses, which are required for polarized delivery of cytotoxic granules. In previous reports, we described the accumulation of connexin 43 (Cx43)-formed gap junctions (GJs) at natural killer (NK) cell-tumor cell cytotoxic immunological synapse. In this report, we demonstrate the functional role of Cx43-GJs at the cytotoxic immunological synapse established between CTLs and melanoma cells during cytotoxicity. Using confocal microscopy, we evaluated Cx43 polarization to the contact site between CTLs isolated from pMEL-1 mice and B16F10 melanoma cells. We knocked down Cx43 expression in B16F10 cells and evaluated its role in the formation of functional GJs and the cytotoxic activity of CTLs, by calcein transfer and granzyme B activity assays, respectively. We found that Cx43 localizes at CTL/B16F10 intercellular contact sites via an antigen-dependent process. We also found that pMEL-1 CTLs but not wild-type naïve CD8+ T cells established functional GJs with B16F10 cells. Interestingly, we observed that Cx43-GJs were required for an efficient granzyme B activity in target B16F10 cells. Using an HLA-A2-restricted/MART-1-specific CD8+ T-cell clone, we confirmed these observations in human cells. Our results suggest that Cx43-channels are relevant components of cytotoxic immunological synapses and potentiate CTL-mediated tumor cell killing.


Asunto(s)
Conexina 43/inmunología , Uniones Comunicantes/inmunología , Sinapsis Inmunológicas/inmunología , Melanoma/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Línea Celular Tumoral , Citotoxicidad Inmunológica , Uniones Comunicantes/patología , Humanos , Sinapsis Inmunológicas/patología , Melanoma/patología , Ratones Endogámicos C57BL , Linfocitos T Citotóxicos/patología
7.
BMC Cancer ; 18(1): 243, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29499656

RESUMEN

BACKGROUND: Gallbladder cancer (GBC), although infrequent in industrialized countries, has high incidence rates in certain world regions, being a leading cause of death among elderly Chilean women. Surgery is the only effective treatment, and a five-year survival rate of advanced-stage patients is less than 10%. Hence, exploring immunotherapy is relevant, although GBC immunogenicity is poorly understood. This study examined the relationship between the host immune response and GBC patient survival based on the presence of tumor-infiltrating lymphocytes at different disease stages. METHODS: Tumor tissues from 80 GBC patients were analyzed by immunohistochemistry for the presence of CD3+, CD4+, CD8+, and Foxp3+ T cell populations, and the results were associated with clinical stage and patient survival. RESULTS: The majority of tumor samples showed CD3+ T cell infiltration, which correlated with better prognosis, particularly in advanced disease stages. CD8+, but not CD4+, T cell infiltration correlated with improved survival, particularly in advanced disease stages. Interestingly, a < 1 CD4+/CD8+ T cell ratio was related with increased survival. Additionally, the presence of Foxp3+ T cells correlated with decreased patient survival, whereas a ≤ 1 Foxp3+/CD8+ T cell ratio was associated with improved patient survival. CONCLUSIONS: Depending on the disease stage, the presence of CD8+ and absence of Foxp3+ T cell populations in tumor tissues correlated with improved GBC patient survival, and thus represent potential markers for prognosis and management of advanced disease, and supports testing of immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Quimioradioterapia Adyuvante/mortalidad , Factores de Transcripción Forkhead/metabolismo , Neoplasias de la Vesícula Biliar/mortalidad , Linfocitos Infiltrantes de Tumor/inmunología , Adulto , Anciano , Femenino , Estudios de Seguimiento , Neoplasias de la Vesícula Biliar/inmunología , Neoplasias de la Vesícula Biliar/patología , Neoplasias de la Vesícula Biliar/terapia , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia
8.
Cancer Immunol Immunother ; 67(12): 1897-1910, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29600445

RESUMEN

Immunotherapy based on checkpoint blockers has proven survival benefits in patients with melanoma and other malignancies. Nevertheless, a significant proportion of treated patients remains refractory, suggesting that in combination with active immunizations, such as cancer vaccines, they could be helpful to improve response rates. During the last decade, we have used dendritic cell (DC) based vaccines where DCs loaded with an allogeneic heat-conditioned melanoma cell lysate were tested in a series of clinical trials. In these studies, 60% of stage IV melanoma DC-treated patients showed immunological responses correlating with improved survival. Further studies showed that an essential part of the clinical efficacy was associated with the use of conditioned lysates. Gallbladder cancer (GBC) is a high-incidence malignancy in South America. Here, we evaluated the feasibility of producing effective DCs using heat-conditioned cell lysates derived from gallbladder cancer cell lines (GBCCL). By characterizing nine different GBCCLs and several fresh tumor tissues, we found that they expressed some tumor-associated antigens such as CEA, MUC-1, CA19-9, Erb2, Survivin, and several carcinoembryonic antigens. Moreover, heat-shock treatment of GBCCLs induced calreticulin translocation and release of HMGB1 and ATP, both known to act as danger signals. Monocytes stimulated with combinations of conditioned lysates exhibited a potent increase of DC-maturation markers. Furthermore, conditioned lysate-matured DCs were capable of strongly inducing CD4+ and CD8+ T cell activation, in both allogeneic and autologous cell co-cultures. Finally, in vitro stimulated CD8+ T cells recognize HLA-matched GBCCLs. In summary, GBC cell lysate-loaded DCs may be considered for future immunotherapy approaches.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Neoplasias de la Vesícula Biliar/terapia , Animales , Antígenos de Neoplasias/inmunología , Biomarcadores , Vacunas contra el Cáncer/efectos adversos , Línea Celular Tumoral , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/inmunología , Neoplasias de la Vesícula Biliar/metabolismo , Regulación de la Expresión Génica , Respuesta al Choque Térmico , Humanos , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
9.
Front Immunol ; 8: 1067, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28919895

RESUMEN

Gap junctions (GJs)-mediated intercellular communications (GJICs) are connexin (Cx)-formed plasma membrane channels that allow for the passage of small molecules between adjacent cells, and are involved in several physiopathological processes, including immune responses against cancer. In general, tumor cells are poorly coupled through GJs, mainly due to low Cx expression or reduced channel activity, suggesting that Cxs may have tumor suppressor roles. However, more recent data indicate that Cxs and/or GJICs may also in some cases promote tumor progression. This dual role of Cx channels in tumor outcome may be due, at least partially, to the fact that GJs not only interconnect cells from the same type, such as cancer cells, but also promote the intercellular communication of tumor cells with different types of cells from their microenvironment, and such diverse intercellular interactions have distinctive impact on tumor development. For example, whereas GJ-mediated interactions among tumor cells and microglia have been implicated in promotion of tumor growth, tumor cells delivery to dendritic cells of antigenic peptides through GJs have been associated with enhanced immune-mediated tumor elimination. In this review, we provide an updated overview on the role of GJICs in tumor immunity, focusing on the pro-tumor and antitumor effect of GJs occurring among tumor and immune cells. Accumulated data suggest that GJICs may act as tumor suppressors or enhancers depending on whether tumor cells interact predominantly with antitumor immune cells or with stromal cells. The complex modulation of immune-tumor cell GJICs should be taken into consideration in order to potentiate current cancer immunotherapies.

10.
Immunol Res ; 65(4): 957-968, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28741259

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by increased autoantibody production that leads to multiple tissue injuries. Dendritic cells (DCs) are important orchestrators of immune responses and key components in fine-tuning the balance between tolerance and immunity. However, their role in autoimmune disorders such as SLE remains uncertain. We analyzed the contribution of DCs in triggering SLE by adoptively transferring splenic DCs from aged autoimmune [NZB×NZW]F1 (BWF1) mice to young healthy BWF1 mice. We observed that the transfer of DCs from autoimmune mice to pre-autoimmune mice induced high autoantibody titers in the serum of recipient mice. Moreover, autoimmune DCs from aged BWF1 mice were crucial for the expansion and differentiation of plasmablasts and CD5+ B cells or B1-like cells in the peripheral blood, and spleen of recipient BWF1 mice, a phenomenon that is observed in autoimmune BWF1 mice. On the other hand, DCs from aged BWF1 mice participated in the expansion and differentiation of DCs and IFN-γ-producing T cells. These results reveal that DCs from autoimmune BWF1 mice exhibit functional and phenotypic characteristics that allow them to trigger B cell hyperactivation, as well as DC and T cell expansion and differentiation, thereby promoting an exacerbated humoral response in lupus-prone mice.


Asunto(s)
Envejecimiento/fisiología , Linfocitos B/inmunología , Células Dendríticas/inmunología , Lupus Eritematoso Sistémico/inmunología , Bazo/patología , Linfocitos T/inmunología , Traslado Adoptivo , Animales , Autoanticuerpos/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Células Dendríticas/trasplante , Humanos , Inmunidad Humoral , Interferón gamma/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos NZB
11.
Mol Immunol ; 54(3-4): 423-34, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23428837

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the increase in the percentage of autoreactive B and T lymphocytes. Since dendritic cells (DCs) are essential for B cell and T cell function, we hypothesized that changes in DC biology may play a critical role in the pathogenesis of the disease. We analyzed the phenotype and distribution of two main DC subsets, conventional (cDC) and plasmacytoid (pDC), in lupus prone (NZW × NZB)F1 (BWF1) mice and age-matched NZW × BALB/c control mice. Our results show that both subsets of lupic DCs displayed an abnormal phenotype, characterized by an over-expression of the co-stimulatory molecules CD80, CD86, PD-L1 and PD-L2 compared with control mice. Accordingly, spleen CD4(+) T cells from lupic mice exhibit an activated phenotype characterized by a higher expression of PD-1, CD25, CD69 and increased secretion of IFN-γ and IL-10. Interestingly, lupic mice also present an increase in the percentage of cDC in peripheral blood and an increase in the percentage of pDCs in spleen and mesenteric lymph nodes (MLNs) compared with control and pre-lupic mice. Homing experiments demonstrate that lupic and pre-lupic DCs migrate preferentially to the spleen compared to DCs from control mice. This preferential recruitment and retention of DCs in the spleen is related to an altered expression of different chemokine and chemokine receptors on both, DCs and stromal cells from lupic mice. Our results suggest that this altered phenotype and migratory behavior shown by DCs from lupic mice may account for the abnormal T cell and B cell responses in lupus.


Asunto(s)
Células Dendríticas/patología , Lupus Eritematoso Sistémico/patología , Bazo/metabolismo , Células del Estroma/patología , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos CD/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Movimiento Celular/genética , Movimiento Celular/inmunología , Quimiocinas/genética , Quimiocinas/inmunología , Quimiocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Interferón gamma/genética , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-10/metabolismo , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ratones , Ratones Endogámicos BALB C , Fenotipo , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Proteína 2 Ligando de Muerte Celular Programada 1/inmunología , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Receptores de Quimiocina/genética , Receptores de Quimiocina/inmunología , Receptores de Quimiocina/metabolismo , Bazo/inmunología , Bazo/patología , Células del Estroma/inmunología , Células del Estroma/metabolismo , Transcriptoma/genética , Transcriptoma/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...