RESUMEN
Objective: The study delved into the epigenetic factors associated with periodontal disease in two lineages of mice, namely C57bl/6 and Balb/c. Its primary objective was to elucidate alterations in the methylome of mice with distinct genetic backgrounds following systemic microbial challenge, employing high-throughput DNA methylation analysis as the investigative tool. Methods: Porphyromonas gingivalis (Pg)was orally administered to induce periodontitis in both Balb/c and C57bl/6 lineage. After euthanasia, genomic DNA from both maxilla and blood were subjected to bisulfite conversion, PCR amplification and genome-wide DNA methylation analysis using the Ovation RRBS Methyl-Seq System coupled with the Illumina Infinium Mouse Methylation BeadChip. Results: Of particular significance was the distinct methylation profile observed within the Pg-induced group of the Balb/c lineage, contrasting with both the control and Pg-induced groups of the C57bl/6 lineage. Utilizing rigorous filtering criteria, we successfully identified a substantial number of differentially methylated regions (DMRs) across various tissues and comparison groups, shedding light on the prevailing hypermethylation in non-induced cohorts and hypomethylation in induced groups. The comparison between blood and maxilla samples underscored the unique methylation patterns specific to the jaw tissue. Our comprehensive methylome analysis further unveiled statistically significant disparities, particularly within promoter regions, in several comparison groups. Conclusion: The differential DNA methylation patterns observed between C57bl/6 and Balb/c mouse lines suggest that epigenetic factors contribute to the variations in disease susceptibility. The identified differentially methylated regions associated with immune regulation and inflammatory response provide potential targets for further investigation. These findings emphasize the importance of considering epigenetic mechanisms in the development and progression of periodontitis.
Asunto(s)
Metilación de ADN , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Porphyromonas gingivalis , Animales , Porphyromonas gingivalis/genética , Ratones , Periodontitis/microbiología , Epigénesis Genética , Enfermedades Periodontales/microbiología , Susceptibilidad a Enfermedades , Infecciones por Bacteroidaceae/microbiología , EpigenomaRESUMEN
PURPOSE: Clinical next-generation sequencing is an effective approach for identifying pathogenic sequence variants that are medically actionable for participants and families but are not associated with the participant's primary diagnosis. These variants are called secondary findings (SFs). According to the literature, there is no report of the types and frequencies of SFs in a large pediatric cohort that includes substantial African-American participants. We sought to investigate the types (including American College of Medical Genetics and Genomics [ACMG] and non-ACMG-recommended gene lists), frequencies, and rates of SFs, as well as the effects of SF disclosure on the participants and families of a large pediatric cohort at the Center for Applied Genomics at The Children's Hospital of Philadelphia. METHODS: We systematically identified pathogenic (P) and likely pathogenic (LP) variants in established disease-causing genes, adhering to ACMG v3.2 secondary finding guidelines and beyond. For non-ACMG SFs, akin to incidental findings in clinical settings, we utilized a set of criteria focusing on pediatric onset, high penetrance, moderate to severe phenotypes, and the clinical actionability of the variants. This criteria-based approach was applied rather than using a fixed gene list to ensure that the variants identified are likely to affect participant health significantly. To identify and categorize these variants, we used a clinical-grade variant classification standard per ACMG/AMP recommendations; additionally, we conducted a detailed literature search to ensure a comprehensive exploration of potential SFs relevant to pediatric participants. RESULTS: We report a distinctive distribution of 1464 P/LP SF variants in 16,713 participants. There were 427 unique variants in ACMG genes and 265 in non-ACMG genes. The most frequently mutated genes among the ACMG and non-ACMG gene lists were TTR(41.6%) and CHEK2 (7.16%), respectively. Overall, variants of possible medical importance were found in 8.76% of participants in both ACMG (5.81%) and non-ACMG (2.95%) genes. CONCLUSION: Our study revealed that 8.76% of a large, multiethnic pediatric cohort carried actionable secondary genetic findings, with 5.81% in ACMG genes and 2.95% in non-ACMG genes. These findings emphasize the importance of including diverse populations in genetic research to ensure that all groups benefit from early identification of disease risks. Our results provide a foundation for expanding the ACMG gene list and improving clinical care through early interventions.
RESUMEN
There are two key signatures of pediatric cancers: (a) higher prevalence of germline alterations and (b) heterogeneity in alteration types. Recent population-based assessments have demonstrated that children with birth defects (BDs) are more likely to develop cancer even without chromosomal anomalies; therefore, explorations of genetic alterations in children with BDs and cancers could provide new insights into the underlying mechanisms for pediatric tumor development. We performed whole-genome sequencing (WGS) on blood-derived DNA for 1556 individuals without chromosomal anomalies, including 454 BD probands with at least one type of malignant tumor, 757 cancer-free children with BDs, and 345 healthy individuals, focusing on copy number variation (CNV) analysis. Roughly half of the children with BD-cancer have CNVs that are not identified in BD-only/healthy individuals, and CNVs are not evenly distributed among these patients. Strong heterogeneity was observed, with a limited number of cancer predisposition genes containing CNVs in more than three patients. Moreover, functional enrichments of genes with CNVs showed that dozens of patients have variations related to the same biological pathways, such as deletions of genes with neurological functions and duplications of immune response genes. Phenotype clustering uncovered recurrences of patients with sarcoma: A notable enrichment was observed involving non-coding RNA regulators, showing strong signals related to growth and cancer regulations in functional analysis. In conclusion, we conducted one of the first genomic studies exploring the impact of CNVs on cancer development in children with BDs, unveiling new insights into the underlying biological processes.
RESUMEN
Sickle cell disease (SCD) is an inherited blood disorder marked by homozygosity of hemoglobin S, which is a defective hemoglobin caused by a missense mutation in the ß-globin gene. However, clinical phenotypes of SCD vary among patients. To investigate genetic variants associated with various clinical phenotypes of SCD, we genotyped DNA samples from 520 SCD subjects and used a genome-wide association study (GWAS) approach to identify genetic variants associated with phenotypic features of SCD. For HbF levels, the previously reported 2p16.1 locus (BCL11A) reached genome significance (rs1427407, P = 8.58 × 10-10) in our GWAS as expected. In addition, we found a new genome-wide significance locus at 15q14 (rs8182015, P = 2.07 × 10-8) near gene EMC7. GWAS of acute chest syndrome (ACS) detected a locus (rs79915189, P = 3.70 × 10-8) near gene IDH2 at 15q26.1. The SNP, rs79915189, is also an expression quantitative trait locus (eQTL) of IDH2 in multiple tissues. For vasoocclusive episode (VOE), GWAS detected multiple significant signals at 2p25.1 (rs62118798, P = 4.27 × 10-8), 15q26.1 (rs62020555, P = 2.04 × 10-9) and 15q26.3 (rs117797325, P = 4.63 × 10-8). Our findings provide novel insights into the genetic mechanisms of SCD suggesting that common genetic variants play an important role in the presentation of the clinical phenotypes of patients with SCD.
Asunto(s)
Anemia de Células Falciformes , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Humanos , Anemia de Células Falciformes/genética , Masculino , Femenino , Adulto , Fenotipo , Predisposición Genética a la Enfermedad , Adolescente , Hemoglobina Fetal/genética , Genotipo , Síndrome Torácico Agudo/genética , Niño , Adulto Joven , Variación GenéticaRESUMEN
Atopic dermatitis (AD) is a highly heritable and common inflammatory skin condition affecting children and adults worldwide. Multi-ancestry approaches to AD genetic association studies are poised to boost power to detect genetic signal and identify ancestry-specific loci contributing to AD risk. Here, we present a multi-ancestry GWAS meta-analysis of twelve AD cohorts from five ancestral populations totaling 56,146 cases and 602,280 controls. We report 101 genomic loci associated with AD, including 15 loci that have not been previously associated with AD or eczema. Fine-mapping, QTL colocalization, and cell-type enrichment analyses identified genes and cell types implicated in AD pathophysiology. Functional analyses in keratinocytes provide evidence for genes that could play a role in AD through epidermal barrier function. Our study provides new insights into the etiology of AD by harnessing multiple genetic and functional approaches to unveil the mechanisms by which AD-associated variants impact genes and cell types.
RESUMEN
Importance: Childhood is a crucial developmental phase for mental health and cognitive function, both of which are commonly affected in patients with psychiatric disorders. This neurodevelopmental trajectory is shaped by a complex interplay of genetic and environmental factors. While common genetic variants account for a large proportion of inherited genetic risk, rare genetic variations, particularly copy number variants (CNVs), play a significant role in the genetic architecture of neurodevelopmental disorders. Despite their importance, the relevance of CNVs to child psychopathology and cognitive function in the general population remains underexplored. Objective: Investigating CNV associations with dimensions of child psychopathology and cognitive functions. Design Setting and Participants: ABCD® study focuses on a cohort of over 11,875 youth aged 9 to 10, recruited from 21 sites in the US, aiming to investigate the role of various factors, including brain, environment, and genetic factors, in the etiology of mental and physical health from middle childhood through early adulthood. Data analysis occurred from April 2023 to April 2024. Main Outcomes and Measures: In this study, we utilized PennCNV and QuantiSNP algorithms to identify duplications and deletions larger than 50Kb across a cohort of 11,088 individuals from the Adolescent Brain Cognitive Development® study. CNVs meeting quality control standards were subjected to a genome-wide association scan to identify regions associated with quantitative measures of broad psychiatric symptom domains and cognitive outcomes. Additionally, a CNV risk score, reflecting the aggregated burden of genetic intolerance to inactivation and dosage sensitivity, was calculated to assess its impact on variability in overall and dimensional child psychiatric and cognitive phenotypes. Results: In a final sample of 8,564 individuals (mean age=9.9 years, 4,532 males) passing quality control, we identified 4,111 individuals carrying 5,760 autosomal CNVs. Our results revealed significant associations between specific CNVs and our phenotypes of interest, psychopathology and cognitive function. For instance, a duplication at 10q26.3 was associated with overall psychopathology, and somatic complaints in particular. Additionally, deletions at 1q12.1, along with duplications at 14q11.2 and 10q26.3, were linked to overall cognitive function, with particular contributions from fluid intelligence (14q11.2), working memory (10q26.3), and reading ability (14q11.2). Moreover, individuals carrying CNVs previously associated with neurodevelopmental disorders exhibited greater impairment in social functioning and cognitive performance across multiple domains, in particular working memory. Notably, a higher deletion CNV risk score was significantly correlated with increased overall psychopathology (especially in dimensions of social functioning, thought disorder, and attention) as well as cognitive impairment across various domains. Conclusions and Relevance: In summary, our findings shed light on the contributions of CNVs to interindividual variability in complex traits related to neurocognitive development and child psychopathology.
RESUMEN
Polygenic variation unrelated to disease contributes to interindividual variation in baseline white blood cell (WBC) counts, but its clinical significance is uncharacterized. We investigated the clinical consequences of a genetic predisposition toward lower WBC counts among 89,559 biobank participants from tertiary care centers using a polygenic score for WBC count (PGSWBC) comprising single nucleotide polymorphisms not associated with disease. A predisposition to lower WBC counts was associated with a decreased risk of identifying pathology on a bone marrow biopsy performed for a low WBC count (odds-ratio = 0.55 per standard deviation increase in PGSWBC [95%CI, 0.30-0.94], p = 0.04), an increased risk of leukopenia (a low WBC count) when treated with a chemotherapeutic (n = 1724, hazard ratio [HR] = 0.78 [0.69-0.88], p = 4.0 × 10-5) or immunosuppressant (n = 354, HR = 0.61 [0.38-0.99], p = 0.04). A predisposition to benign lower WBC counts was associated with an increased risk of discontinuing azathioprine treatment (n = 1,466, HR = 0.62 [0.44-0.87], p = 0.006). Collectively, these findings suggest that there are genetically predisposed individuals who are susceptible to escalations or alterations in clinical care that may be harmful or of little benefit.
Asunto(s)
Predisposición Genética a la Enfermedad , Leucopenia , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Humanos , Recuento de Leucocitos , Masculino , Femenino , Leucopenia/genética , Leucopenia/sangre , Persona de Mediana Edad , Anciano , Adulto , Inmunosupresores/uso terapéuticoRESUMEN
The co-occurrence and familial clustering of neurodevelopmental disorders and immune disorders suggest shared genetic risk factors. Based on genome-wide association summary statistics from five neurodevelopmental disorders and four immune disorders, we conducted genome-wide, local genetic correlation and polygenic overlap analysis. We further performed a cross-trait GWAS meta-analysis. Pleotropic loci shared between the two categories of diseases were mapped to candidate genes using multiple algorithms and approaches. Significant genetic correlations were observed between neurodevelopmental disorders and immune disorders, including both positive and negative correlations. Neurodevelopmental disorders exhibited higher polygenicity compared to immune disorders. Around 50%-90% of genetic variants of the immune disorders were shared with neurodevelopmental disorders. The cross-trait meta-analysis revealed 154 genome-wide significant loci, including 8 novel pleiotropic loci. Significant associations were observed for 30 loci with both types of diseases. Pathway analysis on the candidate genes at these loci revealed common pathways shared by the two types of diseases, including neural signaling, inflammatory response, and PI3K-Akt signaling pathway. In addition, 26 of the 30 lead SNPs were associated with blood cell traits. Neurodevelopmental disorders exhibit complex polygenic architecture, with a subset of individuals being at a heightened genetic risk for both neurodevelopmental and immune disorders. The identification of pleiotropic loci has important implications for exploring opportunities for drug repurposing, enabling more accurate patient stratification, and advancing genomics-informed precision in the medical field of neurodevelopmental disorders.
Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades del Sistema Inmune , Herencia Multifactorial , Trastornos del Neurodesarrollo , Polimorfismo de Nucleótido Simple , Humanos , Trastornos del Neurodesarrollo/genética , Enfermedades del Sistema Inmune/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Herencia Multifactorial/genéticaRESUMEN
BACKGROUND: Epigenetics makes substantial contribution to the aetiology of autism spectrum disorder (ASD) and may harbour a unique opportunity to prevent the development of ASD. We aimed to identify novel epigenetic genes involved in ASD aetiology. METHODS: Trio-based whole exome sequencing was conducted on ASD families. Genome editing technique was used to knock out the candidate causal gene in a relevant cell line. ATAC-seq, ChIP-seq and RNA-seq were performed to investigate the functional impact of knockout (KO) or mutation in the candidate gene. RESULTS: We identified a novel candidate gene NASP (nuclear autoantigenic sperm protein) for epigenetic dysregulation in ASD in a Chinese nuclear family including one proband with autism and comorbid atopic disease. The de novo likely gene disruptive variant tNASP(Q289X) subjects the expression of tNASP to nonsense-mediated decay. tNASP KO increases chromatin accessibility, promotes the active promoter state of genes enriched in synaptic signalling and leads to upregulated expression of genes in the neural signalling and immune signalling pathways. Compared with wild-type tNASP, tNASP(Q289X) enhances chromatin accessibility of the genes with enriched expression in the brain. RNA-seq revealed that genes involved in neural and immune signalling are affected by the tNASP mutation, consistent with the phenotypic impact and molecular effects of nasp-1 mutations in Caenorhabditis elegans. Two additional patients with ASD were found carrying deletion or deleterious mutation in the NASP gene. CONCLUSION: We identified novel epigenetic mechanisms mediated by tNASP which may contribute to the pathogenesis of ASD and its immune comorbidity.
Asunto(s)
Trastorno del Espectro Autista , Autoantígenos , Epigénesis Genética , Proteínas Nucleares , Femenino , Humanos , Masculino , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/inmunología , Trastorno Autístico/genética , Trastorno Autístico/patología , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Mutación , Linaje , Transducción de Señal/genética , Autoantígenos/genética , Proteínas Nucleares/genéticaRESUMEN
Polygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can be implemented in the clinic, including reduced predictive performance of PRSs in diverse populations, and the interpretation and communication of genetic results to both providers and patients. To address these challenges, the National Human Genome Research Institute-funded Electronic Medical Records and Genomics (eMERGE) Network has developed a framework and pipeline for return of a PRS-based genome-informed risk assessment to 25,000 diverse adults and children as part of a clinical study. From an initial list of 23 conditions, ten were selected for implementation based on PRS performance, medical actionability and potential clinical utility, including cardiometabolic diseases and cancer. Standardized metrics were considered in the selection process, with additional consideration given to strength of evidence in African and Hispanic populations. We then developed a pipeline for clinical PRS implementation (score transfer to a clinical laboratory, validation and verification of score performance), and used genetic ancestry to calibrate PRS mean and variance, utilizing genetically diverse data from 13,475 participants of the All of Us Research Program cohort to train and test model parameters. Finally, we created a framework for regulatory compliance and developed a PRS clinical report for return to providers and for inclusion in an additional genome-informed risk assessment. The initial experience from eMERGE can inform the approach needed to implement PRS-based testing in diverse clinical settings.
Asunto(s)
Enfermedad Crónica , Puntuación de Riesgo Genético , Salud Poblacional , Adulto , Niño , Humanos , Comunicación , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Estados UnidosRESUMEN
BACKGROUND: The genetic architecture of JIA remains only partially comprehended. There is a clear imperative for continued endeavours to uncover insights into the underlying causes of JIA. METHODS: This study encompassed a comprehensive spectrum of endeavours, including conducting a JIA genome-wide association study (GWAS) meta-analysis that incorporated data from 4550 JIA cases and 18 446 controls. We employed in silico and genome-editing approaches to prioritizing target genes. To investigate pleiotropic effects, we conducted phenome-wide association studies. Cell-type enrichment analyses were performed by integrating bulk and single-cell sequencing data. Finally, we delved into potential druggable targets for JIA. RESULTS: Fourteen genome-wide significant non-HLA loci were identified, including four novel loci, each exhibiting pleiotropic associations with other autoimmune diseases or musculoskeletal traits. We uncovered strong genetic correlation between JIA and BMD traits at 52 genomic regions, including three GWAS loci for JIA. Candidate genes with immune functions were captured by in silico analyses at each novel locus, with additional findings identified through our experimental approach. Cell-type enrichment analysis revealed 21 specific immune cell types crucial for the affected organs in JIA, indicating their potential contribution to the disease. Finally, 24 known or candidate druggable target genes were prioritized. CONCLUSIONS: Our identification of four novel JIA-associated genes, CD247, RHOH, COLEC10 and IRF8, broadens the novel potential drug repositioning opportunities. We established a new genetic link between COLEC10, TNFRSF11B and JIA/BMD. Additionally, the identification of RHOH underscores its role in positive thymocyte selection, thereby illuminating a critical facet of JIA's underlying biological mechanisms.
Asunto(s)
Artritis Juvenil , Estudio de Asociación del Genoma Completo , Humanos , Artritis Juvenil/genética , Artritis Juvenil/tratamiento farmacológico , Predisposición Genética a la Enfermedad , Genómica , Factores Reguladores del Interferón/genéticaRESUMEN
BACKGROUND: CLEC16A intron 19 has been identified as a candidate locus for common variable immunodeficiency (CVID). OBJECTIVES: This study sought to elucidate the molecular mechanism by which variants at the CLEC16A intronic locus may contribute to the pathogenesis of CVID. METHODS: The investigators performed fine-mapping of the CLEC16A locus in a CVID cohort, then deleted the candidate functional SNP in T-cell lines by the CRISPR-Cas9 technique and conducted RNA-sequencing to identify target gene(s). The interactions between the CLEC16A locus and its target genes were identified using circular chromosome conformation capture. The transcription factor complexes mediating the chromatin interactions were determined by proteomic approach. The molecular pathways regulated by the CLEC16A locus were examined by RNA-sequencing and reverse phase protein array. RESULTS: This study showed that the CLEC16A locus is an enhancer regulating expression of multiple target genes including a distant gene ATF7IP2 through chromatin interactions. Distinct transcription factor complexes mediate the chromatin interactions in an allele-specific manner. Disruption of the CLEC16A locus affects the AKT signaling pathway, as well as the molecular response of CD4+ T cells to immune stimulation. CONCLUSIONS: Through multiomics and targeted experimental approaches, this study elucidated the underlying target genes and signaling pathways involved in the genetic association of CLEC16A with CVID, and highlighted plausible molecular targets for developing novel therapeutics.
Asunto(s)
Inmunodeficiencia Variable Común , Intrones , Lectinas Tipo C , Proteínas de Transporte de Monosacáridos , Humanos , Lectinas Tipo C/genética , Intrones/genética , Proteínas de Transporte de Monosacáridos/genética , Inmunodeficiencia Variable Común/genética , Inmunodeficiencia Variable Común/inmunología , Polimorfismo de Nucleótido Simple , Regulación de la Expresión Génica , Femenino , Masculino , Transducción de Señal/genética , Linfocitos T CD4-Positivos/inmunología , AdultoRESUMEN
BACKGROUND: Feeding costs represent the largest expenditures in beef production. Therefore, the animal efficiency in converting feed in high-quality protein for human consumption plays a major role in the environmental impact of the beef industry and in the beef producers' profitability. In this context, breeding animals for improved feed efficiency through genomic selection has been considered as a strategic practice in modern breeding programs around the world. Copy number variation (CNV) is a less-studied source of genetic variation that can contribute to phenotypic variability in complex traits. In this context, this study aimed to: (1) identify CNV and CNV regions (CNVRs) in the genome of Nellore cattle (Bos taurus indicus); (2) assess potential associations between the identified CNVR and weaning weight (W210), body weight measured at the time of selection (WSel), average daily gain (ADG), dry matter intake (DMI), residual feed intake (RFI), time spent at the feed bunk (TF), and frequency of visits to the feed bunk (FF); and, (3) perform functional enrichment analyses of the significant CNVR identified for each of the traits evaluated. RESULTS: A total of 3,161 CNVs and 561 CNVRs ranging from 4,973 bp to 3,215,394 bp were identified. The CNVRs covered up to 99,221,894 bp (3.99%) of the Nellore autosomal genome. Seventeen CNVR were significantly associated with dry matter intake and feeding frequency (number of daily visits to the feed bunk). The functional annotation of the associated CNVRs revealed important candidate genes related to metabolism that may be associated with the phenotypic expression of the evaluated traits. Furthermore, Gene Ontology (GO) analyses revealed 19 enrichment processes associated with FF. CONCLUSIONS: A total of 3,161 CNVs and 561 CNVRs were identified and characterized in a Nellore cattle population. Various CNVRs were significantly associated with DMI and FF, indicating that CNVs play an important role in key biological pathways and in the phenotypic expression of feeding behavior and growth traits in Nellore cattle.
Asunto(s)
Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo , Humanos , Bovinos/genética , Animales , Fenotipo , Ingestión de Alimentos/genética , Conducta Alimentaria , Alimentación Animal/análisisRESUMEN
BACKGROUND: Pubertal growth patterns correlate with future health outcomes. However, the genetic mechanisms mediating growth trajectories remain largely unknown. Here, we modeled longitudinal height growth with Super-Imposition by Translation And Rotation (SITAR) growth curve analysis on ~ 56,000 trans-ancestry samples with repeated height measurements from age 5 years to adulthood. We performed genetic analysis on six phenotypes representing the magnitude, timing, and intensity of the pubertal growth spurt. To investigate the lifelong impact of genetic variants associated with pubertal growth trajectories, we performed genetic correlation analyses and phenome-wide association studies in the Penn Medicine BioBank and the UK Biobank. RESULTS: Large-scale growth modeling enables an unprecedented view of adolescent growth across contemporary and 20th-century pediatric cohorts. We identify 26 genome-wide significant loci and leverage trans-ancestry data to perform fine-mapping. Our data reveals genetic relationships between pediatric height growth and health across the life course, with different growth trajectories correlated with different outcomes. For instance, a faster tempo of pubertal growth correlates with higher bone mineral density, HOMA-IR, fasting insulin, type 2 diabetes, and lung cancer, whereas being taller at early puberty, taller across puberty, and having quicker pubertal growth were associated with higher risk for atrial fibrillation. CONCLUSION: We report novel genetic associations with the tempo of pubertal growth and find that genetic determinants of growth are correlated with reproductive, glycemic, respiratory, and cardiac traits in adulthood. These results aid in identifying specific growth trajectories impacting lifelong health and show that there may not be a single "optimal" pubertal growth pattern.
Asunto(s)
Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Adulto , Adolescente , Humanos , Niño , Preescolar , Pubertad/genética , Fenotipo , Estatura/genética , Evaluación de Resultado en la Atención de Salud , Estudios LongitudinalesRESUMEN
BACKGROUND: Previous studies have implicated both rare copy number variations (CNVs) and common variants in liability for attention-deficit/hyperactivity disorder (ADHD). However, how common and rare genetic variants jointly contribute to individual liability requires further investigation in larger cohorts. METHODS: This study comprises 9385 participants of European descent and 7810 participants of African American ancestry who were recruited from the greater Philadelphia area by the Children's Hospital of Philadelphia. The polygenic risk score (PRS) of each participant was estimated by linkage disequilibrium pruning and p-value thresholding (P + T) methods using PRSice-2. We investigated whether the risk of ADHD follows a polygenic liability threshold model wherein 1) the risk of ADHD requires less contribution from common variants in the presence of a rare CNV, and 2) control carriers of ADHD-associated CNVs have lower common risk allele burden than noncarriers. RESULTS: CNVs previously reported in ADHD cases were significantly associated with ADHD risk in both the European American cohort and the African American cohort. Healthy control participants carrying those same risk CNVs had lower PRSs than those without risk CNVs in the European American cohort. This result was replicated in the African American cohort. However, PRSs were not significantly different in case participants carrying risk CNVs versus those without risk CNVs. CONCLUSIONS: These findings provide evidence in support of interactive effects of PRS and ADHD-associated CNVs on disease risk and add novel insights into the genetic basis of ADHD by highlighting a protective role of low PRS in ADHD.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Variaciones en el Número de Copia de ADN , Niño , Humanos , Variaciones en el Número de Copia de ADN/genética , Trastorno por Déficit de Atención con Hiperactividad/genética , Puntuación de Riesgo Genético , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple/genética , Estudio de Asociación del Genoma CompletoRESUMEN
BACKGROUND: Patients with birth defects (BD) exhibit an elevated risk of cancer. We aimed to investigate the potential link between pediatric cancers and BDs, exploring the hypothesis of shared genetic defects contributing to the coexistence of these conditions. METHODS: This study included 1454 probands with BDs (704 females and 750 males), including 619 (42.3%) with and 845 (57.7%) without co-occurrence of pediatric onset cancers. Whole genome sequencing (WGS) was done at 30X coverage through the Kids First/Gabriella Miller X01 Program. RESULTS: 8211 CNV loci were called from the 1454 unrelated individuals. 191 CNV loci classified as pathogenic/likely pathogenic (P/LP) were identified in 309 (21.3%) patients, with 124 (40.1%) of these patients having pediatric onset cancers. The most common group of CNVs are pathogenic deletions covering the region ChrX:52,863,011-55,652,521, seen in 162 patients including 17 males. Large recurrent P/LP duplications >5MB were detected in 33 patients. CONCLUSIONS: This study revealed that P/LP CNVs were common in a large cohort of BD patients with high rate of pediatric cancers. We present a comprehensive spectrum of P/LP CNVs in patients with BDs and various cancers. Notably, deletions involving E2F target genes and genes implicated in mitotic spindle assembly and G2/M checkpoint were identified, potentially disrupting cell-cycle progression and providing mechanistic insights into the concurrent occurrence of BDs and cancers.
Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias , Masculino , Niño , Femenino , Humanos , Variaciones en el Número de Copia de ADN/genética , Secuenciación Completa del Genoma , Neoplasias/epidemiología , Neoplasias/genética , ComorbilidadRESUMEN
OBJECTIVE: Accumulative evidence indicates a critical role of mitochondrial function in autism spectrum disorders (ASD), implying that ASD risk may be linked to mitochondrial dysfunction due to DNA (mtDNA) variations. Although a few studies have explored the association between mtDNA variations and ASD, the role of mtDNA in ASD is still unclear. Here, we aimed to investigate whether mitochondrial DNA haplogroups are associated with the risk of ASD. METHOD: Two European cohorts and an Ashkenazi Jewish (AJ) cohort were analyzed, including 2,062 ASD patients in comparison with 4,632 healthy controls. DNA samples were genotyped using Illumina HumanHap550/610 and Illumina 1M arrays, inclusive of mitochondrial markers. Mitochondrial DNA (mtDNA) haplogroups were identified from genotyping data using HaploGrep2. A mitochondrial genome imputation pipeline was established to detect mtDNA variants. We conducted a case-control study to investigate potential associations of mtDNA haplogroups and variants with the susceptibility to ASD. RESULTS: We observed that the ancient adaptive mtDNA haplogroup K was significantly associated with decreased risk of ASD by the investigation of 2 European cohorts including a total of 2,006 cases and 4,435 controls (odds ratio = 0.64, P=1.79 × 10-5), and we replicated this association in an Ashkenazi Jewish (AJ) cohort including 56 cases and 197 controls (odds ratio = 0.35, P = 9.46 × 10-3). Moreover, we demonstrate that the mtDNA variants rs28358571, rs28358584, and rs28358280 are significantly associated with ASD risk. Further expression quantitative trait loci (eQTLs) analysis indicated that the rs28358584 and rs28358280 genotypes are associated with expression levels of nearby genes in brain tissues, suggesting those mtDNA variants may confer risk for ASD via regulation of expression levels of genes encoded by the mitochondrial genome. CONCLUSION: This study helps to shed light on the contribution of mitochondria in ASD and provides new insights into the genetic mechanism underlying ASD, suggesting the potential involvement of mtDNA-encoded proteins in the development of ASD.