Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38562882

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of cell fate in developmental systems. However, identifying the molecular hallmarks of potency - the capacity of a cell to differentiate into other cell types - has remained challenging. Here, we introduce CytoTRACE 2, an interpretable deep learning framework for characterizing potency and differentiation states on an absolute scale from scRNA-seq data. Across 31 human and mouse scRNA-seq datasets encompassing 28 tissue types, CytoTRACE 2 outperformed existing methods for recovering experimentally determined potency levels and differentiation states covering the entire range of cellular ontogeny. Moreover, it reconstructed the temporal hierarchy of mouse embryogenesis across 62 timepoints; identified pan-tissue expression programs that discriminate major potency levels; and facilitated discovery of cellular phenotypes in cancer linked to survival and immunotherapy resistance. Our results illuminate a fundamental feature of cell biology and provide a broadly applicable platform for delineating single-cell differentiation landscapes in health and disease.

2.
Genome Med ; 13(1): 73, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33926541

RESUMEN

BACKGROUND: Cancer researchers use cell lines, patient-derived xenografts, engineered mice, and tumoroids as models to investigate tumor biology and to identify therapies. The generalizability and power of a model derive from the fidelity with which it represents the tumor type under investigation; however, the extent to which this is true is often unclear. The preponderance of models and the ability to readily generate new ones has created a demand for tools that can measure the extent and ways in which cancer models resemble or diverge from native tumors. METHODS: We developed a machine learning-based computational tool, CancerCellNet, that measures the similarity of cancer models to 22 naturally occurring tumor types and 36 subtypes, in a platform and species agnostic manner. We applied this tool to 657 cancer cell lines, 415 patient-derived xenografts, 26 distinct genetically engineered mouse models, and 131 tumoroids. We validated CancerCellNet by application to independent data, and we tested several predictions with immunofluorescence. RESULTS: We have documented the cancer models with the greatest transcriptional fidelity to natural tumors, we have identified cancers underserved by adequate models, and we have found models with annotations that do not match their classification. By comparing models across modalities, we report that, on average, genetically engineered mice and tumoroids have higher transcriptional fidelity than patient-derived xenografts and cell lines in four out of five tumor types. However, several patient-derived xenografts and tumoroids have classification scores that are on par with native tumors, highlighting both their potential as faithful model classes and their heterogeneity. CONCLUSIONS: CancerCellNet enables the rapid assessment of transcriptional fidelity of tumor models. We have made CancerCellNet available as a freely downloadable R package ( https://github.com/pcahan1/cancerCellNet ) and as a web application ( http://www.cahanlab.org/resources/cancerCellNet_web ) that can be applied to new cancer models that allows for direct comparison to the cancer models evaluated here.


Asunto(s)
Neoplasias/genética , Transcripción Genética , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ingeniería Genética , Humanos , Neoplasias/patología , Organoides/patología , Especificidad de la Especie , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Mucosal Immunol ; 14(1): 144-151, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32518367

RESUMEN

In allergic airway inflammation, VEGFR-3-mediated lymphangiogenesis occurs in humans and mouse models, yet its immunological roles, particularly in adaptive immunity, are poorly understood. Here, we explored how pro-lymphangiogenic signaling affects the allergic response to house dust mite (HDM). In the acute inflammatory phase, the lungs of mice treated with blocking antibodies against VEGFR-3 (mF4-31C1) displayed less inflammation overall, with dramatically reduced innate and T-cell numbers and reduced inflammatory chemokine levels. However, when inflammation was allowed to resolve and memory recall was induced 2 months later, mice treated with mF4-31C1 as well as VEGF-C/-D knockout models showed exacerbated type 2 memory response to HDM, with increased Th2 cells, eosinophils, type 2 chemokines, and pathological inflammation scores. This was associated with lower CCL21 and decreased TRegs in the lymph nodes. Together, our data imply that VEGFR-3 activation in allergic airways helps to both initiate the acute inflammatory response and regulate the adaptive (memory) response, possibly in part by shifting the TReg/Th2 balance. This introduces new immunomodulatory roles for pro-lymphangiogenic VEGFR-3 signaling in allergic airway inflammation and suggests that airway lymphatics may be a novel target for treating allergic responses.


Asunto(s)
Memoria Inmunológica , Linfangiogénesis , Hipersensibilidad Respiratoria/etiología , Hipersensibilidad Respiratoria/metabolismo , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Alérgenos , Animales , Biomarcadores , Susceptibilidad a Enfermedades , Inmunofenotipificación , Linfangiogénesis/genética , Ratones , Pyroglyphidae/inmunología , Hipersensibilidad Respiratoria/patología , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...