Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37445748

RESUMEN

Inflammatory bowel diseases (IBD) are complex chronic inflammatory disorders of the gastrointestinal (GI) tract. Recent evidence suggests that the gut-brain axis may be pivotal in gastrointestinal and neurological diseases, especially IBD. Here, we present the first proof of concept for a microfluidic technology to model bilateral neuro-immunological communication. We designed a device composed of three compartments with an asymmetric channel that allows the isolation of soma and neurites thanks to microchannels and creates an in vitro synaptic compartment. Human-induced pluripotent stem cell-derived cortical glutamatergic neurons were maintained in soma compartments for up to 21 days. We performed a localized addition of dendritic cells (MoDCs) to either the soma or synaptic compartment. The microfluidic device was coupled with microelectrode arrays (MEAs) to assess the impact on the electrophysiological activity of neurons while adding dendritic cells. Our data highlight that an electrophysiologic signal is transmitted between two compartments of glutamatergic neurons linked by synapses in a bottom-up way when soma is exposed to primed dendritic cells. In conclusion, our study authenticates communication between dendritic cells and neurons in inflammatory conditions such as IBD. This platform opens the way to complexification with gut components to reach a device for pharmacological compound screening by blocking the gut-brain axis at a mucosal level and may help patients.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Neuronas , Humanos , Neuritas , Sinapsis , Microfluídica
2.
J Vis Exp ; (177)2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34866620

RESUMEN

Pediatric high-grade gliomas (pHGG) represent childhood and adolescent brain cancers that carry a rapid dismal prognosis. Since there is a need to overcome the resistance to current treatments and find a new way of cure, modeling the disease as close as possible in an in vitro setting to test new drugs and therapeutic procedures is highly demanding. Studying their fundamental pathobiological processes, including glutamatergic neuron hyperexcitability, will be a real advance in understanding interactions between the environmental brain and pHGG cells. Therefore, to recreate neurons/pHGG cell interactions, this work shows the development of a functional in vitro model co-culturing human-induced Pluripotent Stem (hiPS)-derived cortical glutamatergic neurons pHGG cells into compartmentalized microfluidic devices and a process to record their electrophysiological modifications. The first step was to differentiate and characterize human glutamatergic neurons. Secondly, the cells were cultured in microfluidic devices with pHGG derived cell lines. Brain microenvironment and neuronal activity were then included in this model to analyze the electrical impact of pHGG cells on these micro-environmental neurons. Electrophysiological recordings are coupled using multielectrode arrays (MEA) to these microfluidic devices to mimic physiological conditions and to record the electrical activity of the entire neural network. A significant increase in neuron excitability was underlined in the presence of tumor cells.


Asunto(s)
Neoplasias Encefálicas , Glioma , Adolescente , Neoplasias Encefálicas/patología , Niño , Técnicas de Cocultivo , Glioma/patología , Humanos , Dispositivos Laboratorio en un Chip , Neuronas/fisiología , Microambiente Tumoral
3.
J Pharmacol Toxicol Methods ; 99: 106587, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31207287

RESUMEN

INTRODUCTION: Failures in drug development often result from the emergence of unexpected adverse drug reactions. It is clear that adverse drug reactions, including seizure liability, should be assessed earlier. The goal of the present work was to develop a new platform of in vitro assays, NS-PC set (for Neuroservice proconvulsive set), to determine the proconvulsive potential of compounds earlier in preclinical development. METHODS: Assays were based on electrophysiological recordings in acute hippocampal slices performed with multielectrode arrays. 4 reference proconvulsive/seizurogenic compounds (4-aminopyridine, bicuculline, kainate and carbachol) and 4 anti-epileptic drugs (AEDs; phenobarbital, carbamazepine, clonazepam and valproic acid) were evaluated on electrophysiological endpoints involved in seizure risk (neuronal excitability, balance of excitatory/inhibitory synaptic transmission, occurrence of neuronal synchronization mechanisms materialized by epileptiform discharges). RESULTS: The reference compounds increased the number and area under the curve of population spikes, triggered epileptiform discharges and enhanced the firing rate of CA1 neurons. The effects of the 4 antiepileptic drugs were assessed on these 3 parameters. They were able to partially of completely reverse the effects of proconvulsive compounds. DISCUSSION: The use of reference proconvulsive compounds and AEDs validated the electrophysiological parameters to detect proconvulsive risk. Systematic evaluation of compounds with the 3 complementary endpoints increase the probability to detect seizure liability in vitro. Depending on the compound mechanism of action, only one or two of the identified parameters might be modified.

4.
Neuron ; 92(6): 1220-1237, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27916455

RESUMEN

Huntington's disease (HD) symptoms are driven to a large extent by dysfunction of the basal ganglia circuitry. HD patients exhibit reduced striatal phoshodiesterase 10 (PDE10) levels. Using HD mouse models that exhibit reduced PDE10, we demonstrate the benefit of pharmacologic PDE10 inhibition to acutely correct basal ganglia circuitry deficits. PDE10 inhibition restored corticostriatal input and boosted cortically driven indirect pathway activity. Cyclic nucleotide signaling is impaired in HD models, and PDE10 loss may represent a homeostatic adaptation to maintain signaling. Elevation of both cAMP and cGMP by PDE10 inhibition was required for rescue. Phosphoproteomic profiling of striatum in response to PDE10 inhibition highlighted plausible neural substrates responsible for the improvement. Early chronic PDE10 inhibition in Q175 mice showed improvements beyond those seen with acute administration after symptom onset, including partial reversal of striatal deregulated transcripts and the prevention of the emergence of HD neurophysiological deficits. VIDEO ABSTRACT.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Enfermedad de Huntington/fisiopatología , Neostriado/efectos de los fármacos , Inhibidores de Fosfodiesterasa/farmacología , Pirazoles/farmacología , Quinolinas/farmacología , Animales , Ganglios Basales/diagnóstico por imagen , Ganglios Basales/efectos de los fármacos , Ganglios Basales/metabolismo , Ganglios Basales/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Huntington/metabolismo , Ratones , Neostriado/diagnóstico por imagen , Neostriado/metabolismo , Neostriado/fisiopatología , Hidrolasas Diéster Fosfóricas , Tomografía de Emisión de Positrones , Núcleo Subtalámico/diagnóstico por imagen , Núcleo Subtalámico/efectos de los fármacos , Núcleo Subtalámico/metabolismo , Núcleo Subtalámico/fisiopatología , Tritio
5.
Exp Neurol ; 282: 99-118, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27163548

RESUMEN

Dysregulation of the kynurenine (Kyn) pathway has been associated with the progression of Huntington's disease (HD). In particular, elevated levels of the kynurenine metabolites 3-hydroxy kynurenine (3-OH-Kyn) and quinolinic acid (Quin), have been reported in the brains of HD patients as well as in rodent models of HD. The production of these metabolites is controlled by the activity of kynurenine mono-oxygenase (KMO), an enzyme which catalyzes the synthesis of 3-OH-Kyn from Kyn. In order to determine the role of KMO in the phenotype of mouse models of HD, we have developed a potent and selective KMO inhibitor termed CHDI-340246. We show that this compound, when administered orally to transgenic mouse models of HD, potently and dose-dependently modulates the Kyn pathway in peripheral tissues and in the central nervous system. The administration of CHDI-340246 leads to an inhibition of the formation of 3-OH-Kyn and Quin, and to an elevation of Kyn and Kynurenic acid (KynA) levels in brain tissues. We show that administration of CHDI-340246 or of Kyn and of KynA can restore several electrophysiological alterations in mouse models of HD, both acutely and after chronic administration. However, using a comprehensive panel of behavioral tests, we demonstrate that the chronic dosing of a selective KMO inhibitor does not significantly modify behavioral phenotypes or natural progression in mouse models of HD.


Asunto(s)
Fenómenos Electrofisiológicos/efectos de los fármacos , Inhibidores Enzimáticos/uso terapéutico , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/fisiopatología , Quinurenina 3-Monooxigenasa/antagonistas & inhibidores , Pirimidinas/uso terapéutico , Análisis de Varianza , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Fenómenos Electrofisiológicos/genética , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Hipocampo/efectos de los fármacos , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Técnicas In Vitro , Ácido Quinurénico/metabolismo , Quinurenina 3-Monooxigenasa/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microdiálisis , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacología , Ácido Quinolínico/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transfección , Repeticiones de Trinucleótidos/genética , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
6.
PLoS One ; 11(2): e0148129, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26829109

RESUMEN

GluN2A is the most abundant of the GluN2 NMDA receptor subunits in the mammalian CNS. Physiological and genetic evidence implicate GluN2A-containing receptors in susceptibility to autism, schizophrenia, childhood epilepsy and neurodevelopmental disorders such as Rett Syndrome. However, GluN2A-selective pharmacological probes to explore the therapeutic potential of targeting these receptors have been lacking. Here we disclose a novel series of pyrazine-containing GluN2A antagonists exemplified by MPX-004 (5-(((3-chloro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)pyrazine-2-carboxamide) and MPX-007 (5-(((3-fluoro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)methylpyrazine-2-carboxamide). MPX-004 and MPX-007 inhibit GluN2A-containing NMDA receptors expressed in HEK cells with IC50s of 79 nM and 27 nM, respectively. In contrast, at concentrations that completely inhibited GluN2A activity these compounds have no inhibitory effect on GluN2B or GluN2D receptor-mediated responses in similar HEK cell-based assays. Potency and selectivity were confirmed in electrophysiology assays in Xenopus oocytes expressing GluN2A-D receptor subtypes. Maximal concentrations of MPX-004 and MPX-007 inhibited ~30% of the whole-cell current in rat pyramidal neurons in primary culture and MPX-004 inhibited ~60% of the total NMDA receptor-mediated EPSP in rat hippocampal slices. GluN2A-selectivity at native receptors was confirmed by the finding that MPX-004 had no inhibitory effect on NMDA receptor mediated synaptic currents in cortical slices from GRIN2A knock out mice. Thus, MPX-004 and MPX-007 offer highly selective pharmacological tools to probe GluN2A physiology and involvement in neuropsychiatric and developmental disorders.


Asunto(s)
Subunidades de Proteína/metabolismo , Pirazinas/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Sulfonamidas/farmacología , Animales , Región CA1 Hipocampal/citología , Calcio/metabolismo , Células Cultivadas , Perros , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Ácido Glutámico/metabolismo , Glicina/metabolismo , Humanos , Activación del Canal Iónico/efectos de los fármacos , Células de Riñón Canino Madin Darby , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oocitos/metabolismo , Pirazinas/química , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Relación Estructura-Actividad , Sulfonamidas/química , Xenopus
7.
PLoS Curr ; 62014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24558637

RESUMEN

Huntington's disease is a neurodegenerative disorder caused by mutations in the CAG tract of huntingtin. Several studies in HD cellular and rodent systems have identified disturbances in cyclic nucleotide signaling, which might be relevant to pathogenesis and therapeutic intervention. To investigate whether selective phosphodiesterase (PDE) inhibitors can improve some aspects of disease pathogenesis in HD models, we have systematically evaluated the effects of a variety of cAMP and cGMP selective PDE inhibitors in various HD models. Here we present the lack of effect in a variety of endpoints of the PDE subtype selective inhibitor SCH-51866, a PDE1/5 inhibitor, in the R6/2 mouse model of HD, after chronic oral dosing.

8.
Adv Mater ; 25(15): 2135-9, 2013 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-23417987

RESUMEN

A simple and versatile fabrication process is used to define conducting polymer microelectrode arrays (MEAs), patterning at the same time the recording electrodes as well as the insulating layer. Thanks to the low impedance of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) electrodes, these MEAs allow in vitro recording of action potentials from rat hippocampus slices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...