Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Theriol (Warsz) ; 58(2): 119-126, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23538781

RESUMEN

Based on published information about the glacial, postglacial, and recent distribution of the root vole, Microtus oeconomus, we hypothesized that a population inhabiting the pristine wetland in eastern Poland (Bialowieza Primeval Forest) might comprise a high diversity of haplotypes. The support for this hypothesis was provided by an analysis of partial cytb gene sequences from 149 voles sampled within a two-hectare plot during a nine-year study. In this population, we identified eight haplotypes (PLB1-PLB8), four of which were new to the root vole. These haplotypes were characterized by low nucleotide diversity (π = 0.0054, SE = 0.0019), the absence of transversional differences between sequences, and no changes in the encoded amino acid sequence: features suggesting a lack of immigration from the distant populations. The haplotype number and their frequency distribution in males and females did not differ significantly. An assessment of the persistence of matrilines in the local population throughout the study period revealed that the haplotype composition was relatively stable for only about 3 years. A more complete haplotype network for root voles in Europe was constructed by combining the newly identified haplotypes with the 45 previously described haplotypes. Two of the haplotypes detected in this study occupy key positions in this network: PLB5, as the closest link to the North European group, and PLB8, as an ancestor to many other Central European haplotypes.

2.
Mol Ecol ; 19(13): 2800-12, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20561198

RESUMEN

Genetic variability, kin structure and demography of a population are mutually dependent. Population genetic theory predicts that under demographically stable conditions, neutral genetic variability reaches equilibrium between gene flow and drift. However, density fluctuations and non-random mating, resulting e.g. from kin clustering, may lead to changes in genetic composition over time. Theoretical models also predict that changes in kin structure may affect aggression level and recruitment, leading to density fluctuations. These predictions have been rarely tested in natural populations. The aim of this study was to analyse changes in genetic variability and kin structure in a local population of the root vole (Microtus oeconomus) that underwent a fourfold change in mean density over a 6-year period. Intensive live-trapping resulted in sampling 88% of individuals present in the study area, as estimated from mark-recapture data. Based on 642 individual genotypes at 20 microsatellite loci, we compared genetic variability and kin structure of this population between consecutive years. We found that immigration was negatively correlated with density, while the number of kin groups was positively correlated with density. This is consistent with theoretical predictions that changes in kin structure play an important role in population fluctuations. Despite the changes in density and kin structure, there was no genetic differentiation between years. Population-level genetic diversity measures did not significantly vary in time and remained relatively high (H(E) range: 0.72-0.78). These results show that a population that undergoes significant demographic and social changes may maintain high genetic variability and stable genetic composition.


Asunto(s)
Arvicolinae/genética , Variación Genética , Genética de Población , Reproducción/genética , Animales , Femenino , Genotipo , Desequilibrio de Ligamiento , Masculino , Repeticiones de Microsatélite , Polonia , Densidad de Población , Análisis de Secuencia de ADN , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...