Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cancer Discov ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38587317

RESUMEN

Microsatellite-unstable (MSI) cancers require WRN helicase to resolve replication stress due to expanded DNA (TA)n-dinucleotide repeats. WRN is a promising synthetic lethal target for MSI tumours, and WRN inhibitors are in development. Here, we used CRISPR-Cas9 base editing to map WRN residues critical for MSI cells, validating the helicase domain as the primary drug target. Fragment-based screening led to the development of potent and highly selective WRN helicase covalent inhibitors. These compounds selectively suppressed MSI model growth In vitro and In vivo by mimicking WRN loss, inducing DNA double-strand breaks at expanded TA-repeats and DNA damage. Assessment of biomarkers in preclinical models linked TA-repeat expansions and mismatch repair (MMR) alterations to compound activity. Efficacy was confirmed in immunotherapy-resistant organoids and patient-derived xenograft (PDX) models. The discovery of potent, selective covalent WRN inhibitors provides proof of concept for synthetic-lethal targeting of WRN in MSI cancer and tools to dissect WRN biology.

2.
Org Lett ; 26(12): 2420-2424, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38498905

RESUMEN

The discussion herein describes a metallaphotoredox reaction that allows for efficient exploration of benzyl structure-activity relationships in medicinal chemistry. The use of HTE (high-throughput experimentation) and ChemBeads allows for rapid reaction optimization. The formation of di(hetero)arylmethanes via cross-electrophile coupling between aryl bromides and benzyl bromides provides access to diverse chemical space. The breadth of the substrate scope will be discussed, along with the utilization of batch photochemistry for the preparation of this di(hetero)arylmethane motif on a larger scale.

3.
J Org Chem ; 86(4): 3120-3137, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33555189

RESUMEN

A two-step metal-halogen exchange and diastereoselective copper-mediated Michael addition onto a complex α,ß-unsaturated system has been developed and applied toward the synthesis of bisaryl Nrf2 activators. Optimization of metal-halogen exchange using (n-Bu)3MgLi allowed for the preparation of custom aryl-functionalized magnesiate reagents at noncryogenic temperatures. Following transmetalation, these reagents were used in highly diastereoselective Michael addition reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA