Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nature ; 632(8025): 570-575, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39143341

RESUMEN

Understanding the provenance of megaliths used in the Neolithic stone circle at Stonehenge, southern England, gives insight into the culture and connectivity of prehistoric Britain. The source of the Altar Stone, the central recumbent sandstone megalith, has remained unknown, with recent work discounting an Anglo-Welsh Basin origin1,2. Here we present the age and chemistry of detrital zircon, apatite and rutile grains from within fragments of the Altar Stone. The detrital zircon load largely comprises Mesoproterozoic and Archaean sources, whereas rutile and apatite are dominated by a mid-Ordovician source. The ages of these grains indicate derivation from an ultimate Laurentian crystalline source region that was overprinted by Grampian (around 460 million years ago) magmatism. Detrital age comparisons to sedimentary packages throughout Britain and Ireland reveal a remarkable similarity to the Old Red Sandstone of the Orcadian Basin in northeast Scotland. Such a provenance implies that the Altar Stone, a 6 tonne shaped block, was sourced at least 750 km from its current location. The difficulty of long-distance overland transport of such massive cargo from Scotland, navigating topographic barriers, suggests that it was transported by sea. Such routing demonstrates a high level of societal organization with intra-Britain transport during the Neolithic period.

2.
Geobiology ; 22(2): e12595, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596869

RESUMEN

On the anoxic Archean Earth, prior to the onset of oxidative weathering, electron acceptors were relatively scarce, perhaps limiting microbial productivity. An important metabolite may have been sulfate produced during the photolysis of volcanogenic SO2 gas. Multiple sulfur isotope data can be used to track this sulfur source, and indeed this record indicates SO2 photolysis dating back to at least 3.7 Ga, that is, as far back as proposed evidence of life on Earth. However, measurements of multiple sulfur isotopes in some key strata from that time can be challenging due to low sulfur concentrations. Some studies have overcome this challenge with NanoSIMS or optimized gas-source mass spectrometry techniques, but those instruments are not readily accessible. Here, we applied an aqua regia leaching protocol to extract small amounts of sulfur from whole rocks for analyses of multiple sulfur isotopes by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Measurements of standards and replicates demonstrate good precision and accuracy. We applied this technique to meta-sedimentary rocks with putative biosignatures from the Eoarchean Isua Supracrustal Belt (ISB, >3.7 Ga) and found positive ∆33S (1.40-1.80‰) in four meta-turbidites and negative ∆33S (-0.80‰ and -0.66‰) in two meta-carbonates. Two meta-basalts do not display significant mass-independent fractionation (MIF, -0.01‰ and 0.16‰). In situ Re-Os dating on a molybdenite vein hosted in the meta-turbidites identifies an early ca. 3.7 Ga hydrothermal phase, and in situ Rb-Sr dating of micas in the meta-carbonates suggests metamorphism affected the rocks at ca. 2.2 and 1.7 Ga. We discuss alteration mechanisms and conclude that there is most likely a primary MIF-bearing phase in these meta-sediments. Our new method is therefore a useful addition to the geochemical toolbox, and it confirms that organisms at that time, if present, may indeed have been fed by volcanic nutrients.


Asunto(s)
Carbonatos , Isótopos de Azufre/análisis
3.
Sci Rep ; 13(1): 8581, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237065

RESUMEN

Low-temperature thermochronology is a powerful tool for constraining the thermal evolution of rocks and minerals in relation to a breadth of tectonic, geodynamic, landscape evolution, and natural resource formation processes through deep time. However, complexities inherent to these analytical techniques can make interpreting the significance of results challenging, requiring them to be placed in their geological context in 4-dimensions (3D + time). We present a novel tool for the geospatial archival, analysis and dissemination of fission-track and (U-Th)/He data, built as an extension to the open-access AusGeochem platform ( https://ausgeochem.auscope.org.au ) and freely accessible to scientists from around the world. To demonstrate the power of the platform, three regional datasets from Kenya, Australia and the Red Sea are placed in their 4D geological, geochemical, and geographic contexts, revealing insights into the tectono-thermal evolutions of these areas. Beyond facilitating data interpretation, the archival of fission track and (U-Th)/He (meta-)data in relational schemas unlocks future potential for greater integration of thermochronology and numerical geoscience techniques. The power of formatting data to interface with external tools is demonstrated through the integration of GPlates Web Service with AusGeochem, enabling thermochronology data to be readily viewed in their paleogeographic context through deep time from within the platform.

4.
Data Brief ; 21: 1794-1809, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30505918

RESUMEN

This data article provides zircon U-Pb and Lu-Hf isotopic information along with whole-rock Sm-Nd, Sr and Pb isotopic geochemistry from granitoids in Thailand. The U-Pb ages are described and the classification of crystallisation and inherited ages are explained. The petrography of the granitoid samples is detailed. The data presented in this article are interpreted and discussed in the research article entitled "Probing into Thailand's basement: New insights from U-Pb geochronology, Sr, Sm-Nd, Pb and Lu-Hf isotopic systems from granitoids" (Dew et al., 2018).

5.
Sci Rep ; 8(1): 16619, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30413732

RESUMEN

West Africa was subjected to deformation and exhumation in response to Gondwana break-up. The timing and extent of these events are recorded in the thermal history of the margin. This study reports new apatite fission track (AFT) data from Palaeoproterozoic basement along the primary NE-SW structural trend of the Bole-Nangodi shear zone in northwestern Ghana. The results display bimodality in AFT age (populations of ~210-180 Ma and ~115-105 Ma) and length distributions (populations of 12.2 ± 1.6 and 13.1 ± 1.4 µm), supported by differences in apatite chemistry (U concentrations). The bimodal AFT results and associated QTQt thermal history models provide evidence for multiple cooling phases. Late Triassic - Early Jurassic cooling is interpreted to be related with thermal relaxation after the emplacement of the Central Atlantic Magmatic Province (CAMP). Early to middle Cretaceous cooling is thought to be associated with exhumation during the Cretaceous onset of rifting between West Africa and Brazil. Late Cretaceous - Cenozoic cooling can be related with exhumation of the Ivory Coast - Ghana margin and NNW-SSE shortening through western Africa. Furthermore, our data record differential exhumation of the crust with respect to the Bole-Nangodi shear zone, preserving older (CAMP) cooling ages to the south and younger (rifting) cooling ages to the north of the shear zone, respectively. This suggests that the Palaeoproterozoic BN shear zone was reactivated during the Cretaceous as a result of deformation in the Equatorial Atlantic region of Africa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...