Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107265, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582452

RESUMEN

Histidine kinases are key bacterial sensors that recognize diverse environmental stimuli. While mechanisms of phosphorylation and phosphotransfer by cytoplasmic kinase domains are relatively well-characterized, the ways in which extracytoplasmic sensor domains regulate activation remain mysterious. The Cpx envelope stress response is a conserved Gram-negative two-component system which is controlled by the sensor kinase CpxA. We report the structure of the Escherichia coli CpxA sensor domain (CpxA-SD) as a globular Per-ARNT-Sim (PAS)-like fold highly similar to that of Vibrio parahaemolyticus CpxA as determined by X-ray crystallography. Because sensor kinase dimerization is important for signaling, we used AlphaFold2 to model CpxA-SD in the context of its connected transmembrane domains, which yielded a novel dimer of PAS domains possessing a distinct dimer organization compared to previously characterized sensor domains. Gain of function cpxA∗ alleles map to the dimer interface, and mutation of other residues in this region also leads to constitutive activation. CpxA activation can be suppressed by mutations that restore inter-monomer interactions, suggesting that inhibitory interactions between CpxA-SD monomers are the major point of control for CpxA activation and signaling. Searching through hundreds of structural homologs revealed the sensor domain of Pseudomonas aeruginosa sensor kinase PfeS as the only PAS structure in the same novel dimer orientation as CpxA, suggesting that our dimer orientation may be utilized by other extracytoplasmic PAS domains. Overall, our findings provide insight into the diversity of the organization of PAS sensory domains and how they regulate sensor kinase activation.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Histidina Quinasa , Dominios Proteicos , Multimerización de Proteína , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Histidina Quinasa/metabolismo , Histidina Quinasa/química , Histidina Quinasa/genética , Modelos Moleculares , Transducción de Señal , Vibrio parahaemolyticus/enzimología , Vibrio parahaemolyticus/genética
2.
J Biol Chem ; 300(3): 105709, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309501

RESUMEN

Double-strand breaks (DSBs) are DNA lesions that pose a significant threat to genomic stability. The repair of DSBs by the homologous recombination (HR) pathway is preceded by DNA end resection, the 5' to 3' nucleolytic degradation of DNA away from the DSB. We and others previously identified a role for RNF138, a really interesting new gene finger E3 ubiquitin ligase, in stimulating DNA end resection and HR. Yet, little is known about how RNF138's function is regulated in the context of DSB repair. Here, we show that RNF138 is phosphorylated at residue T27 by cyclin-dependent kinase (CDK) activity during the S and G2 phases of the cell cycle. We also observe that RNF138 is ubiquitylated constitutively, with ubiquitylation occurring in part on residue K158 and rising during the S/G2 phases. Interestingly, RNF138 ubiquitylation decreases upon genotoxic stress. By mutating RNF138 at residues T27, K158, and the previously identified S124 ataxia telangiectasia mutated phosphorylation site (Han et al., 2016, ref. 22), we find that post-translational modifications at all three positions mediate DSB repair. Cells expressing the T27A, K158R, and S124A variants of RNF138 are impaired in DNA end resection, HR activity, and are more sensitive to ionizing radiation compared to those expressing wildtype RNF138. Our findings shed more light on how RNF138 activity is controlled by the cell during HR.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Ubiquitina-Proteína Ligasas , Recombinación Homóloga , Fosforilación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Humanos , Células HEK293
3.
J Biol Chem ; 299(11): 105341, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37832873

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2, the causative agent of coronavirus disease 2019, has resulted in the largest pandemic in recent history. Current therapeutic strategies to mitigate this disease have focused on the development of vaccines and on drugs that inhibit the viral 3CL protease or RNA-dependent RNA polymerase enzymes. A less-explored and potentially complementary drug target is Nsp15, a uracil-specific RNA endonuclease that shields coronaviruses and other nidoviruses from mammalian innate immune defenses. Here, we perform a high-throughput screen of over 100,000 small molecules to identify Nsp15 inhibitors. We characterize the potency, mechanism, selectivity, and predicted binding mode of five lead compounds. We show that one of these, IPA-3, is an irreversible inhibitor that might act via covalent modification of Cys residues within Nsp15. Moreover, we demonstrate that three of these inhibitors (hexachlorophene, IPA-3, and CID5675221) block severe acute respiratory syndrome coronavirus 2 replication in cells at subtoxic doses. This study provides a pipeline for the identification of Nsp15 inhibitors and pinpoints lead compounds for further development against coronavirus disease 2019 and related coronavirus infections.


Asunto(s)
Antivirales , Endorribonucleasas , SARS-CoV-2 , Proteínas no Estructurales Virales , Antivirales/farmacología , Endorribonucleasas/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos
4.
Acta Crystallogr D Struct Biol ; 79(Pt 10): 953-955, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37712437

RESUMEN

Michael James is remembered.

5.
Biochim Biophys Acta Biomembr ; 1865(1): 184069, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36216097

RESUMEN

With the advent of modern detectors and robust structure solution pipeline, cryogenic electron microscopy has recently proved to be game changer in structural biology. Membrane proteins are challenging targets for structural biologists. This minireview focuses a membrane embedded triglyceride synthesizing machine, DGAT1. Decades of research had built the foundational knowledge on this enzyme's activity. However, recently solved cryo-EM structures of this enzyme, in apo and bound form, has provided critical mechanistic insights. The flipping of the catalytic histidine is critical of enzyme catalysis. The structures explain why the enzyme has preference to long fatty acyl chains over the short forms.


Asunto(s)
Diacilglicerol O-Acetiltransferasa , Histidina , Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/metabolismo , Triglicéridos/metabolismo
6.
Diabetes ; 72(1): 126-134, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36256885

RESUMEN

Despite significant progress in understanding the pathogenesis of type 2 diabetes (T2D), the condition remains difficult to manage. Hence, new therapeutic options targeting unique mechanisms of action are required. We have previously observed that elevated skeletal muscle succinyl CoA:3-ketoacid CoA transferase (SCOT) activity, the rate-limiting enzyme of ketone oxidation, contributes to the hyperglycemia characterizing obesity and T2D. Moreover, we identified that the typical antipsychotic agent pimozide is a SCOT inhibitor that can alleviate obesity-induced hyperglycemia. We now extend those observations here, using computer-assisted in silico modeling and in vivo pharmacology studies that highlight SCOT as a noncanonical target shared among the diphenylbutylpiperidine (DPBP) drug class, which includes penfluridol and fluspirilene. All three DPBPs tested (pimozide, penfluridol, and fluspirilene) improved glycemia in obese mice. While the canonical target of the DPBPs is the dopamine 2 receptor, studies in obese mice demonstrated that acute or chronic treatment with a structurally unrelated antipsychotic dopamine 2 receptor antagonist, lurasidone, was devoid of glucose-lowering actions. We further observed that the DPBPs improved glycemia in a SCOT-dependent manner in skeletal muscle, suggesting that this older class of antipsychotic agents may have utility in being repurposed for the treatment of T2D.


Asunto(s)
Antipsicóticos , Diabetes Mellitus Tipo 2 , Hiperglucemia , Animales , Ratones , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Coenzima A Transferasas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dopamina , Fluspirileno/farmacología , Hiperglucemia/tratamiento farmacológico , Ratones Obesos , Penfluridol/farmacología , Pimozida/farmacología , Receptores Dopaminérgicos/metabolismo
7.
Nat Commun ; 13(1): 7076, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400772

RESUMEN

The ProQ/FinO family of RNA binding proteins mediate sRNA-directed gene regulation throughout gram-negative bacteria. Here, we investigate the structural basis for RNA recognition by ProQ/FinO proteins, through the crystal structure of the ProQ/FinO domain of the Legionella pneumophila DNA uptake regulator, RocC, bound to the transcriptional terminator of its primary partner, the sRNA RocR. The structure reveals specific recognition of the 3' nucleotide of the terminator by a conserved pocket involving a ß-turn-α-helix motif, while the hairpin portion of the terminator is recognized by a conserved α-helical N-cap motif. Structure-guided mutagenesis reveals key RNA contact residues that are critical for RocC/RocR to repress the uptake of environmental DNA in L. pneumophila. Structural analysis and RNA binding studies reveal that other ProQ/FinO domains also recognize related transcriptional terminators with different specificities for the length of the 3' ssRNA tail.


Asunto(s)
ARN Pequeño no Traducido , Proteínas de Unión al ARN , Proteínas de Unión al ARN/metabolismo , ARN Pequeño no Traducido/genética
8.
Front Immunol ; 13: 906687, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784352

RESUMEN

Dexamethasone may reduce mortality in COVID-19 patients. Whether dexamethasone or endogenous glucocorticoids, such as cortisol, biochemically interact with SARS-CoV-2 spike 1 protein (S1), or its cellular receptor ACE2, is unknown. Using molecular dynamics (MD) simulations and binding energy calculations, we identified 162 druggable pockets in various conformational states of S1 and all possible binding pockets for cortisol and dexamethasone. Through biochemical binding studies, we confirmed that cortisol and dexamethasone bind to S1. Limited proteolysis and mass spectrometry analyses validated several MD identified binding pockets for cortisol and dexamethasone on S1. Interaction assays indicated that cortisol and dexamethasone separately and cooperatively disrupt S1 interaction with ACE2, through direct binding to S1, without affecting ACE2 catalytic activity. Cortisol disrupted the binding of the mutant S1 Beta variant (E484K, K417N, N501Y) to ACE2. Delta and Omicron variants are mutated in or near identified cortisol-binding pockets in S1, which may affect cortisol binding to them. In the presence of cortisol, we find increased inhibition of S1 binding to ACE2 by an anti-SARS-CoV-2 S1 human chimeric monoclonal antibody against the receptor binding domain. Whether glucocorticoid/S1 direct interaction is an innate defence mechanism that may have contributed to mild or asymptomatic SARS-CoV-2 infection deserves further investigation.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Tratamiento Farmacológico de COVID-19 , Anticuerpos Antivirales , Dexametasona/farmacología , Glucocorticoides/farmacología , Humanos , Hidrocortisona , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2
9.
Sci Rep ; 12(1): 5386, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354845

RESUMEN

Polynucleotide Kinase-Phosphatase (PNKP) is a bifunctional enzyme that possesses both DNA 3'-phosphatase and DNA 5'-kinase activities, which are required for processing termini of single- and double-strand breaks generated by reactive oxygen species (ROS), ionizing radiation and topoisomerase I poisons. Even though PNKP is central to DNA repair, there have been no reports linking PNKP mutations in a Microcephaly, Seizures, and Developmental Delay (MSCZ) patient to cancer. Here, we characterized the biochemical significance of 2 germ-line point mutations in the PNKP gene of a 3-year old male with MSCZ who presented with a high-grade brain tumor (glioblastoma multiforme) within the cerebellum. Functional and biochemical studies demonstrated these PNKP mutations significantly diminished DNA kinase/phosphatase activities, altered its cellular distribution, caused defective repair of DNA single/double stranded breaks, and were associated with a higher propensity for oncogenic transformation. Our findings indicate that specific PNKP mutations may contribute to tumor initiation within susceptible cells in the CNS by limiting DNA damage repair and increasing rates of spontaneous mutations resulting in pediatric glioma associated driver mutations such as ATRX and TP53.


Asunto(s)
Neoplasias Encefálicas , Microcefalia , Neoplasias Encefálicas/genética , Niño , Preescolar , Reparación del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Humanos , Masculino , Microcefalia/genética , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Convulsiones/genética
10.
Biochem J ; 478(1): 135-156, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33439989

RESUMEN

Genomic integrity is most threatened by double-strand breaks, which, if left unrepaired, lead to carcinogenesis or cell death. The cell generates a network of protein-protein signaling interactions that emanate from the DNA damage which are now recognized as a rich basis for anti-cancer therapy development. Deciphering the structures of signaling proteins has been an uphill task owing to their large size and complex domain organization. Recent advances in mammalian protein expression/purification and cryo-EM-based structure determination have led to significant progress in our understanding of these large multidomain proteins. This review is an overview of the structural principles that underlie some of the key signaling proteins that function at the double-strand break site. We also discuss some plausible ideas that could be considered for future structural approaches to visualize and build a more complete understanding of protein dynamics at the break site.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Transducción de Señal/genética , Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Proteína Homóloga de MRE11/química , Proteína Homóloga de MRE11/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional/genética , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/química , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
11.
Biomol NMR Assign ; 15(1): 61-64, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33179208

RESUMEN

In prokaryotic species, gene expression is commonly regulated by small, non-coding RNAs (sRNAs). In the gram-negative bacterium Legionella pneumophila, the regulatory, trans-acting sRNA molecule RocR base pairs with a complementary sequence in the 5'-untranslated region of mRNAs encoding for proteins in the bacterial DNA uptake system, thereby controlling natural competence. Sense-antisense duplexing of RocR with targeted mRNAs is mediated by the recently described RNA chaperone RocC. RocC contains a 12 kDa FinO-domain, which acts as sRNA binding platform, along with an extended C-terminal segment that is predicted to be mostly disordered but appears to be required for repression of bacterial competence. In this work we assigned backbone and side chain 1H, 13C, and 15N chemical shifts of RocC's FinO-domain by solution NMR spectroscopy. The chemical shift data for this protein indicate a mixed α/ß fold that is reminiscent of FinO from Escherichia coli. Our NMR resonance assignments provide the basis for a comprehensive analysis of RocC's chaperoning mechanism on a structural level.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , ARN Pequeño no Traducido , Proteínas de Escherichia coli , Legionella pneumophila
12.
Methods Mol Biol ; 2106: 1-18, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31889248

RESUMEN

The FinO family of proteins constitutes a group of RNA chaperones that interacts with small RNAs (sRNAs) to regulate gene expression in many bacterial species. Here we describe detailed protocols for the biochemical analysis of the RNA chaperone activity of these proteins. Methods are described for preparation of RNA, RNA 5' end labeling with radioisotope and modified EMSA protocols to test the ability of these proteins to catalyze RNA strand exchange and RNA duplex formation.


Asunto(s)
Ensayo de Cambio de Movilidad Electroforética/métodos , Proteínas de Escherichia coli/química , Chaperonas Moleculares/química , Técnicas de Sonda Molecular , ARN Pequeño no Traducido/química , Proteínas de Unión al ARN/química , Proteínas Represoras/química , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Estabilidad del ARN , ARN Pequeño no Traducido/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo
13.
Structure ; 27(10): 1485-1496.e4, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31402222

RESUMEN

ASPP (apoptosis-stimulating proteins of p53) proteins bind PP-1c (protein phosphatase 1) and regulate p53 impacting cancer cell growth and apoptosis. Here we determine the crystal structure of the oncogenic ASPP protein, iASPP, bound to PP-1c. The structure reveals a 1:1 complex that relies on interactions of the iASPP SILK and RVxF motifs with PP-1c, plus interactions of the PP-1c PxxPxR motif with the iASPP SH3 domain. Small-angle X-ray scattering analyses suggest that the crystal structure undergoes slow interconversion with more extended conformations in solution. We show that iASPP, and the tumor suppressor ASPP2, enhance the catalytic activity of PP-1c against the small-molecule substrate, pNPP as well as p53. The combined results suggest that PxxPxR binding to iASPP SH3 domain is critical for complex formation, and that the modular ASPP-PP-1c interface provides dynamic flexibility that enables functional binding and dephosphorylation of p53 and other diverse protein substrates.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Secuencias de Aminoácidos , Compuestos de Anilina/metabolismo , Sitios de Unión , Biocatálisis , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Compuestos Organofosforados/metabolismo , Unión Proteica , Conformación Proteica , Proteína Fosfatasa 1/química , Dispersión del Ángulo Pequeño , Proteína p53 Supresora de Tumor/metabolismo , Difracción de Rayos X
14.
J Bacteriol ; 201(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30322855

RESUMEN

The F plasmid tra operon encodes most of the proteins required for bacterial conjugation. TraJ and ArcA are known activators of the tra operon promoter PY, which is subject to H-NS-mediated silencing. Donor ability and promoter activity assays indicated that PY is inactivated by silencers and requires both TraJ and ArcA for activation to support efficient F conjugation. The observed low-level, ArcA-independent F conjugation is caused by tra expression from upstream alternative promoters. Electrophoretic mobility shift assays showed that TraJ alone weakly binds to PY regulatory DNA; however, TraJ binding is significantly enhanced by ArcA binding to the same DNA, indicating cooperativity of the two proteins. Analysis of binding affinities between ArcA and various DNA fragments in the PY regulatory region defined a 22-bp tandem repeat sequence (from -76 to -55 of PY) sufficient for optimal ArcA binding, which is immediately upstream of the predicted TraJ-binding site (from -54 to -34). Deletion analysis of the PY promoter in strains deficient in TraJ, ArcA, and/or H-NS determined that sequences upstream of -103 are required by silencers including H-NS for PY silencing, whereas sequences downstream of -77 are targeted by TraJ and ArcA for activation. TraJ and ArcA appear not only to counteract PY silencers but also to directly activate PY in a cooperative manner. Our data reveal the cooperativity of TraJ and ArcA during PY activation and provide insights into the regulatory circuit controlling F-family plasmid-mediated bacterial conjugation.IMPORTANCE Conjugation is a major mechanism for dissemination of antibiotic resistance and virulence among bacterial populations. The tra operon in the F family of conjugative plasmids encodes most of the proteins involved in bacterial conjugation. This work reveals that activation of tra operon transcription requires two proteins, TraJ and ArcA, to bind cooperatively to adjacent sites immediately upstream of the major tra promoter PY The interaction of TraJ and ArcA with the tra operon not only relieves PY from silencers but also directly activates it. These findings provide insights into the regulatory circuit of the F-family plasmid-mediated bacterial conjugation.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Conjugación Genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Factor F , Regulación Bacteriana de la Expresión Génica , Operón , Proteínas Represoras/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , ADN Bacteriano/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Eliminación de Gen , Regiones Promotoras Genéticas , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Represoras/genética
15.
J Biol Chem ; 294(2): 520-530, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30446622

RESUMEN

Polynucleotide kinase/phosphatase (PNKP) and X-ray repair cross-complementing 1 (XRCC1) are key proteins in the single-strand DNA break repair pathway. Phosphorylated XRCC1 stimulates PNKP by binding to its forkhead-associated (FHA) domain, whereas nonphosphorylated XRCC1 stimulates PNKP by interacting with the PNKP catalytic domain. Here, we have further studied the interactions between these two proteins, including two variants of XRCC1 (R194W and R280H) arising from single-nucleotide polymorphisms (SNPs) that have been associated with elevated cancer risk in some reports. We observed that interaction of the PNKP FHA domain with phosphorylated XRCC1 extends beyond the immediate, well-characterized phosphorylated region of XRCC1 (residues 515-526). We also found that an XRCC1 fragment, comprising residues 166-436, binds tightly to PNKP and DNA and efficiently activates PNKP's kinase activity. However, interaction of either of the SNP-derived variants of this fragment with PNKP was considerably weaker, and their stimulation of PNKP was severely reduced, although they still could bind DNA effectively. Laser microirradiation revealed reduced recruitment of PNKP to damaged DNA in cells expressing either XRCC1 variant compared with PNKP recruitment in cells expressing WT XRCC1 even though WT and variant XRCC1s were equally efficient at localizing to the damaged DNA. These findings suggest that the elevated risk of cancer associated with these XRCC1 SNPs reported in some studies may be due in part to the reduced ability of these XRCC1 variants to recruit PNKP to damaged DNA.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Polimorfismo de Nucleótido Simple , Dominios y Motivos de Interacción de Proteínas , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Animales , Células CHO , Cricetulus , Daño del ADN , Enzimas Reparadoras del ADN/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Mapas de Interacción de Proteínas , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/química
16.
Structure ; 25(10): 1582-1588.e3, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28919440

RESUMEN

Topoisomerase IIß binding protein 1 (TopBP1) is a critical protein-protein interaction hub in DNA replication checkpoint control. It was proposed that TopBP1 BRCT5 interacts with Bloom syndrome helicase (BLM) to regulate genome stability through either phospho-Ser304 or phospho-Ser338 of BLM. Here we show that TopBP1 BRCT5 specifically interacts with the BLM region surrounding pSer304, not pSer338. Our crystal structure of TopBP1 BRCT4/5 bound to BLM reveals recognition of pSer304 by a conserved pSer-binding pocket, and interactions between an FVPP motif N-terminal to pSer304 and a hydrophobic groove on BRCT5. This interaction utilizes the same surface of BRCT5 that recognizes the DNA damage mediator, MDC1; however the binding orientations of MDC1 and BLM are reversed. While the MDC1 interactions are largely electrostatic, the interaction with BLM has higher affinity and relies on a mix of electrostatics and hydrophobicity. We suggest that similar evolutionarily conserved interactions may govern interactions between TopBP1 and 53BP1.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , RecQ Helicasas/química , RecQ Helicasas/metabolismo , Animales , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Humanos , Ratones , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilación , Conformación Proteica , Serina/metabolismo , Transactivadores/metabolismo
17.
Nucleic Acids Res ; 45(10): 6238-6251, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28453785

RESUMEN

Non-homologous end joining (NHEJ) repairs DNA double strand breaks in non-cycling eukaryotic cells. NHEJ relies on polynucleotide kinase/phosphatase (PNKP), which generates 5΄-phosphate/3΄-hydroxyl DNA termini that are critical for ligation by the NHEJ DNA ligase, LigIV. PNKP and LigIV require the NHEJ scaffolding protein, XRCC4. The PNKP FHA domain binds to the CK2-phosphorylated XRCC4 C-terminal tail, while LigIV uses its tandem BRCT repeats to bind the XRCC4 coiled-coil. Yet, the assembled PNKP-XRCC4-LigIV complex remains uncharacterized. Here, we report purification and characterization of a recombinant PNKP-XRCC4-LigIV complex. We show that the stable binding of PNKP in this complex requires XRCC4 phosphorylation and that only one PNKP protomer binds per XRCC4 dimer. Small angle X-ray scattering (SAXS) reveals a flexible multi-state complex that suggests that both the PNKP FHA and catalytic domains contact the XRCC4 coiled-coil and LigIV BRCT repeats. Hydrogen-deuterium exchange indicates protection of a surface on the PNKP phosphatase domain that may contact XRCC4-LigIV. A mutation on this surface (E326K) causes the hereditary neuro-developmental disorder, MCSZ. This mutation impairs PNKP recruitment to damaged DNA in human cells and provides a possible disease mechanism. Together, this work unveils multipoint contacts between PNKP and XRCC4-LigIV that regulate PNKP recruitment and activity within NHEJ.


Asunto(s)
Reparación del ADN por Unión de Extremidades/fisiología , ADN Ligasa (ATP)/fisiología , Enzimas Reparadoras del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Dominio Catalítico , Daño del ADN , ADN Ligasa (ATP)/química , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/deficiencia , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/química , Deuterio/metabolismo , Discapacidades del Desarrollo/genética , Humanos , Espectrometría de Masas , Microcefalia/genética , Modelos Moleculares , Complejos Multiproteicos , Mutación Missense , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Mutación Puntual , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Convulsiones/genética , Síndrome , Difracción de Rayos X
18.
Biochemistry ; 56(12): 1737-1745, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28276686

RESUMEN

Polynucleotide kinase/phosphatase (PNKP) is a DNA strand break repair enzyme that uses separate 5' kinase and 3' phosphatase active sites to convert damaged 5'-hydroxyl/3'-phosphate strand termini to ligatable 5'-phosphate/3'-hydroxyl ends. The phosphatase active site has received particular attention as a target of inhibition in cancer therapy development. The phosphatase domain dephosphorylates a range of single- and double-stranded substrates; however, structural studies have shown that the phosphatase catalytic cleft can bind only single-stranded substrates. Here we use a catalytically inactive but structurally intact phosphatase mutant to probe interactions between PNKP and a variety of single- and double-stranded DNA substrates using an electrophoretic mobility shift assay. This work indicates that the phosphatase domain binds 3'-phosphorylated single-stranded DNAs in a manner that is highly dependent on the presence of the 3'-phosphate. Double-stranded substrate binding, in contrast, is not as dependent on the 3'-phosphate. Experiments comparing blunt-end, 3'-overhanging, and frayed-end substrates indicate that the predicted loss of energy due to base pair disruption upon binding of the phosphatase active site is likely balanced by favorable interactions between the liberated complementary strand and PNKP. Comparison of the effects on substrate binding of mutations within the phosphatase active site cleft with mutations in surrounding positively charged surfaces suggests that the surrounding surfaces are important for binding to double-stranded substrates. We further show that while fluorescence polarization methods can detect specific binding of single-stranded DNAs with the phosphatase domain, this method does not detect specific interactions between the PNKP phosphatase and double-stranded substrates.


Asunto(s)
Reparación del ADN , ADN de Cadena Simple/química , ADN/química , Fosfatos/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Animales , Sitios de Unión , Dominio Catalítico , Clonación Molecular , ADN/genética , ADN/metabolismo , Daño del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Ratones , Simulación del Acoplamiento Molecular , Mutación , Fosfatos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
19.
Trends Microbiol ; 25(4): 247-249, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28189381

RESUMEN

The stability and function of regulatory small RNAs (sRNAs) often require a specialized RNA-binding protein called an RNA chaperone. Recent findings show that proteins containing a ProQ/FinO domain constitute a new class of RNA chaperones that could play key roles in post-transcriptional gene regulation throughout bacterial species.


Asunto(s)
Escherichia coli/genética , Chaperonas Moleculares/genética , Dominios Proteicos/genética , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Salmonella enterica/genética , Salmonella enterica/metabolismo
20.
Mech Ageing Dev ; 161(Pt A): 130-140, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27470939

RESUMEN

The termini of DNA strand breaks induced by reactive oxygen species or by abortive DNA metabolic intermediates require processing to enable subsequent gap filling and ligation to proceed. The three proteins, tyrosyl DNA-phosphodiesterase 1 (TDP1), aprataxin (APTX) and polynucleotide kinase/phosphatase (PNKP) each act on a discrete set of modified strand-break termini. Recently, a series of neurodegenerative and neurodevelopmental disorders have been associated with mutations in the genes coding for these proteins. Mutations in TDP1 and APTX have been linked to Spinocerebellar ataxia with axonal neuropathy (SCAN1) and Ataxia-ocular motor apraxia 1 (AOA1), respectively, while mutations in PNKP are considered to be responsible for Microcephaly with seizures (MCSZ) and Ataxia-ocular motor apraxia 4 (AOA4). Here we present an overview of the mechanisms of these proteins and how their impairment may give rise to their respective disorders.


Asunto(s)
Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN , Proteínas de Unión al ADN , Trastornos Heredodegenerativos del Sistema Nervioso , Mutación , Trastornos del Neurodesarrollo , Proteínas Nucleares , Hidrolasas Diéster Fosfóricas , Fosfotransferasas (Aceptor de Grupo Alcohol) , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...