Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pathogens ; 13(1)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38251381

RESUMEN

The complement system (CS) contributes to the initial containment of viral and bacterial pathogens and clearance of dying cells in circulation. We previously reported mice deficient in complement component 3 (C3KO mice) were more sensitive than wild-type (WT) mice to ocular HSV-1 infection, as measured by a reduction in cumulative survival and elevated viral titers in the nervous system but not the cornea between days three and seven post infection (pi). The present study was undertaken to determine if complement deficiency impacted virus replication and associated changes in inflammation at earlier time points in the cornea. C3KO mice were found to possess significantly (p < 0.05) less infectious virus in the cornea at 24 h pi that corresponded with a decrease in HSV-1 lytic gene expression at 12 and 24 h pi compared to WT animals. Flow cytometry acquisition found no differences in the myeloid cell populations residing in the cornea including total macrophage and neutrophil populations at 24 h pi with minimal infiltrating cell populations detected at the 12 h pi time point. Analysis of cytokine and chemokine content in the cornea measured at 12 and 24 h pi revealed that only CCL3 (MIP-1α) was found to be different between WT and C3KO mice with >2-fold increased levels (p < 0.05, ANOVA and Tukey's post hoc t-test) in the cornea of WT mice at 12 h pi. C3KO mouse resistance to HSV-1 infection at the early time points correlated with a significant increase in type I interferon (IFN) gene expression including IFN-α1 and IFN-ß and downstream effector genes including tetherin and RNase L (p < 0.05, Mann-Whitney rank order test). These results suggest early activation of the CS interferes with the induction of the type I IFN response and leads to a transient increase in virus replication following corneal HSV-1 infection.

2.
Sci Rep ; 12(1): 15920, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151255

RESUMEN

Effective experimental prophylactic vaccines against viral pathogens such as herpes simplex virus type 1 (HSV-1) have been shown to protect the host through T and/or B lymphocyte-driven responses. Previously, we found a live-attenuated HSV-1 mutant, 0ΔNLS used as a prophylactic vaccine, provided significant protection against subsequent ocular HSV-1 challenge aligned with a robust neutralizing antibody response. Yet, how the virus mutant elicited the humoral immune response relative to parental virus was unknown. Herein, we present the characterization of B cell subsets in vaccinated mice at times after primary vaccination and following boost compared to the parental virus, termed GFP105. We found that 0∆NLS-vaccinated mice possessed more CD4+ follicular helper T (TFH) cells, germinal B cells and class-switched B cells within the first 7 days post-vaccination. Moreover, 0∆NLS vaccination resulted in an increase in plasmablasts and plasma cells expressing amino-acid transporter CD98 along with an elevated titer of HSV-1-specific antibody compared to GFP105-vaccinated animals. Furthermore, O∆NLS-vaccine-induced CD4+ (TFH) cells produced significantly more IL-21 compared to mice immunized with the parental HSV-1 strain. In contrast, there were no differences in the number of regulatory B cells comparing the two groups of immunized mice. In comparing sera recognition of HSV-1-encoded proteins, it was noted antiserum from GFP105-vaccinated mice immunoprecipitated HSV-1 thymidine kinase (TK) and glycoprotein M (gM) whereas sera from 0∆NLS-immunized mice did not even though both groups of vaccinated mice displayed similar neutralizing antibody titers to HSV-1 and were highly resistant to ocular HSV-1 challenge. Collectively, the results suggest (1) the live-attenuated HSV-1 mutant 0∆NLS elicits a robust B cell response that drives select B cell responses greater than the parental HSV-1 and (2) HSV-1 TK and gM are likely expendable components in efficacy of a humoral response to ocular HSV-1 infection.


Asunto(s)
Herpesvirus Humano 1 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos B , Glicoproteínas/metabolismo , Herpesvirus Humano 1/metabolismo , Ratones , Timidina Quinasa/genética , Timidina Quinasa/metabolismo , Vacunas Atenuadas
3.
Viruses ; 14(3)2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35336995

RESUMEN

Tripartite-motif 21 (TRIM21) is thought to regulate the type I interferon (IFN) response to virus pathogens and serve as a cytosolic Fc receptor for immunoglobulin. Since herpes simplex virus (HSV)-1 is sensitive to type I IFN and neutralizing antibody, we investigated the role of TRIM21 in response to ocular HSV-1 infection in mice. In comparison to wild type (WT) mice, TRIM21 deficient (TRIM21 KO) mice were found to be no more susceptible to ocular HSV-1 infection than WT animals, in terms of infectious virus recovered in the cornea. Similar pathology, in terms of neovascularization, opacity, and loss of peripheral vision function, was observed in both WT and TRIM21 KO mice. However, TRIM21 KO mice did possess a significant increase in infectious virus recovered in the trigeminal ganglia, in comparison to the WT animals. The increased susceptibility was not due to changes in HSV-1-specific CD4+ or CD8+ T cell numbers or functional capabilities, or in changes in type I IFN or IFN-inducible gene expression. In summary, the absence of TRIM21 results in a modest, but significant, increase in HSV-1 titers recovered from the TG of TRIM21 KO mice during acute infection, by a mechanism yet to be determined.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Queratitis Herpética , Animales , Córnea , Herpesvirus Humano 1/fisiología , Ratones , Ratones Endogámicos C57BL , Ganglio del Trigémino
4.
J Virol ; 96(6): e0172421, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35045268

RESUMEN

Previous studies by our group identified a highly efficacious vaccine 0ΔNLS (deficient in the nuclear localization signal of infected cell protein 0) against herpes simplex virus 1 (HSV-1) in an experimental ocular mouse model. However, details regarding fundamental differences in the initial innate and adaptive host immune response were not explored. Here, we present a side-by-side analysis of the primary infection characterizing differences of the host immune response in mice infected with 0ΔNLS versus the parental, GFP105. The results show that local viral infection and replication are controlled more efficiently in mice exposed to 0ΔNLS versus GFP105 but that the clearance of infectious virus is equivalent when the two groups are compared. Moreover, the 0ΔNLS-infected mice displayed enhanced effector CD8+ but not CD4+ T cell responses from the draining lymph nodes at day 7 postinfection measured by gamma interferon (IFN-γ) and tumor necrosis factor alpha production along with changes in cell metabolism. The increased effector function of CD8+ T cells from 0ΔNLS-infected mice was not driven by changes in antigen presentation but lost in the absence of a functional type I IFN pathway. These results are further supported by enhanced local expression of type I IFN and IFN-inducible genes along with increased IL-12 production by CD8α+ dendritic cells in the draining lymph nodes of 0ΔNLS-infected mice compared to the GFP105-infected animals. It was also noted the recall to HSV-1 antigen by CD8+ T cells was elevated in mice infected with HSV-1 0ΔNLS compared to GFP105. Collectively, the results underscore the favorable qualities of HSV-1 0ΔNLS as a candidate vaccine against HSV-1 infection. IMPORTANCE Cytotoxic T lymphocytes (CTLs) play a critical role in the clearance for many viral pathogens including herpes simplex virus 1 (HSV-1). Here, we compared the cellular innate and adaptive immune response in mice infected with an attenuated HSV-1 (0ΔNLS) found to be a highly successful experimental prophylactic vaccine to parental HSV-1 virus. We found that CD8+ T cell effector function is elevated in 0ΔNLS-infected mice through noncognate signals, including interleukin-12 and type I interferon pathways along with changes in CD8+ T cell metabolism, whereas other factors, including cell proliferation, costimulatory molecule expression, and antigen presentation, were dispensable. Thus, an increase in CTL activity established by exposure to HSV-1 0ΔNLS in comparison to parental HSV-1 likely contributes to the efficacy of the vaccine and underscores the nature of the attenuated virus as a vaccine candidate for HSV-1 infection.


Asunto(s)
Linfocitos T CD8-positivos , Vacunas contra el Virus del Herpes Simple , Herpesvirus Humano 1 , Animales , Linfocitos T CD8-positivos/inmunología , Herpes Simple/inmunología , Vacunas contra el Virus del Herpes Simple/inmunología , Interferón gamma/inmunología , Ratones , Ratones Endogámicos C57BL , Receptor de Interferón alfa y beta/inmunología
5.
Front Immunol ; 13: 1028341, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685562

RESUMEN

Ocular pathology is often associated with acute herpes simplex virus (HSV)-1 infection of the cornea in mice. The present study was undertaken to determine the role of early T lymphocyte activation 1 protein or osteopontin (OPN) in corneal inflammation and host resistance to ocular HSV-1 infection. C57BL/6 wild type (WT) and osteopontin deficient (OPN KO) mice infected in the cornea with HSV-1 were evaluated for susceptibility to infection and cornea pathology. OPN KO mice were found to possess significantly more infectious virus in the cornea at day 3 and day 7 post infection compared to infected WT mice. Coupled with these findings, HSV-1-infected OPN KO mouse corneas were found to express less interferon (IFN)-α1, double-stranded RNA-dependent protein kinase, and RNase L compared to infected WT animals early post infection that likely contributed to decreased resistance. Notably, OPN KO mice displayed significantly less corneal opacity and neovascularization compared to WT mice that paralleled a decrease in expression of vascular endothelial growth factor (VEGF) A within 12 hr post infection. The change in corneal pathology of the OPN KO mice aligned with a decrease in total leukocyte infiltration into the cornea and specifically, in neutrophils at day 3 post infection and in macrophage subpopulations including CCR2+CD115+CD206+ and CD115+CD183+CD206+ -expressing cells. The infiltration of CD4+ and CD8+ T cells into the cornea was unaltered comparing infected WT to OPN KO mice. Likewise, there was no difference in the total number of HSV-1-specific CD4+ or CD8+ T cells found in the draining lymph node with both sets functionally competent in response to virus antigen comparing WT to OPN KO mice. Collectively, these results demonstrate OPN deficiency directly influences the host innate immune response to ocular HSV-1 infection reducing some aspects of inflammation but at a cost with an increase in local HSV-1 replication.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Queratitis Herpética , Animales , Ratones , Linfocitos T CD8-positivos , Inflamación , Macrófagos/patología , Ratones Endogámicos C57BL , Osteopontina/genética , Receptores CCR2 , Factor A de Crecimiento Endotelial Vascular
6.
Cells ; 10(8)2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34440839

RESUMEN

Uncontrolled inflammation is associated with neurodegenerative conditions in central nervous system tissues, including the retina and brain. We previously found that the neural retina (NR) plays an important role in retinal immunity. Tumor necrosis factor Receptor-Associated Factor 3 (TRAF3) is a known immune regulator expressed in the retina; however, whether TRAF3 regulates retinal immunity is unknown. We have generated the first conditional NR-Traf3 knockout mouse model (Chx10-Cre/Traf3f/f) to enable studies of neuronal TRAF3 function. Here, we evaluated NR-Traf3 depletion effects on whole retinal TRAF3 protein expression, visual acuity, and retinal structure and function. Additionally, to determine if NR-Traf3 plays a role in retinal immune regulation, we used flow cytometry to assess immune cell infiltration following acute local lipopolysaccharide (LPS) administration. Our results show that TRAF3 protein is highly expressed in the NR and establish that NR-Traf3 depletion does not affect basal retinal structure or function. Importantly, NR-Traf3 promoted LPS-stimulated retinal immune infiltration. Thus, our findings propose NR-Traf3 as a positive regulator of retinal immunity. Further, the NR-Traf3 mouse provides a tool for investigations of neuronal TRAF3 as a novel potential target for therapeutic interventions aimed at suppressing retinal inflammatory disease and may also inform treatment approaches for inflammatory neurodegenerative brain conditions.


Asunto(s)
Proteínas de Homeodominio/genética , Neuronas/metabolismo , Retina/metabolismo , Factor 3 Asociado a Receptor de TNF/genética , Factores de Transcripción/genética , Animales , Modelos Animales de Enfermedad , Electrorretinografía , Inmunidad/efectos de los fármacos , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Neuronas/inmunología , Receptores CCR2/genética , Receptores CCR2/metabolismo , Retina/fisiología , Factor 3 Asociado a Receptor de TNF/deficiencia , Factor 3 Asociado a Receptor de TNF/metabolismo , Factores de Transcripción/deficiencia , Uveítis/etiología , Uveítis/inmunología , Uveítis/metabolismo , Agudeza Visual
7.
Sci Rep ; 11(1): 10247, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986436

RESUMEN

Corneal transparency is an essential characteristic necessary for normal vision. In response to microbial infection, the integrity of the cornea can become compromised as a result of the inflammatory response and the ensuing tissue pathology including neovascularization (NV) and collagen lamellae destruction. We have previously found complement activation contributes to cornea pathology-specifically, denervation in response to HSV-1 infection. Therefore, we investigated whether the complement system also played a role in HSV-1-mediated neovascularization. Using wild type (WT) and complement component 3 deficient (C3 KO) mice infected with HSV-1, we found corneal NV was accelerated associated with an increase in inflammatory monocytes (CD11b+CCR2+CD115+/-Ly6G-Ly6Chigh), macrophages (CD11b+CCR2+CD115+Ly6G-Ly6Chigh) and a subpopulation of granulocytes/neutrophils (CD11b+CCR2-CD115+Ly6G+Ly6Clow). There were also increases in select pro-inflammatory and pro-angiogenic factors including IL-1α, matrix metalloproteinases (MMP)-2, MMP-3, MMP-8, CXCL1, CCL2, and VEGF-A that coincided with increased inflammation, neovascularization, and corneal opacity in the C3 KO mice. The difference in inflammation between WT and C3 KO mice was not driven by changes in virus titer. However, viral antigen clearance was hindered in C3 KO mouse corneas suggesting the complement system has a dynamic regulatory role within the cornea once an inflammatory cascade is initiated by HSV-1.


Asunto(s)
Complemento C3/inmunología , Herpes Simple/inmunología , Herpesvirus Humano 1/fisiología , Animales , Complemento C3/genética , Complemento C3/metabolismo , Córnea/patología , Neovascularización de la Córnea/patología , Opacidad de la Córnea/patología , Femenino , Granulocitos/patología , Herpes Simple/metabolismo , Herpes Simple/veterinaria , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/patogenicidad , Infecciones/patología , Inflamación/patología , Queratitis Herpética/patología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/inmunología
8.
Vaccine ; 39(18): 2526-2536, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33814229

RESUMEN

The neonatal Fc receptor (FcRn) is constitutively expressed in the cornea and is up-regulated in response to herpes simplex virus type 1 (HSV-1). Previously, we found targeting cornea FcRn expression by small interfering RNA-mediated knockdown reduced the local efficacy of HSV-1 0ΔNLS vaccinated C57BL/6 mice against ocular challenge with HSV-1. The current study was undertaken to evaluate the HSV-1 0ΔNLS vaccine efficacy in FcRn deficient (FcRn KO) mice challenged with HSV-1. Whereas there was little neutralizing antibody detected in the serum of HSV-1 0ΔNLS vaccinated FcRn KO mice, these mice exhibited the same degree of protection against ocular challenge with HSV-1 as wild type (WT) C57BL/6 mice as measured by cumulative survival, infectious virus shed or retained in tissue, and corneal pathology including opacity and neovascularization. Mock-vaccinated FcRn KO mice were found to be more sensitive to ocular HSV-1 infection compared to mock-vaccinated (WT) mice in terms of cumulative survival and virus shedding. In addition, the FcRn KO mice generated significantly fewer effector (CD3+CD44+CD62L-) and central (CD3+CD44+CD62L+) memory CD8+ T cells compared to the WT mice 7 days post infection. Collectively, mock-vaccinated FcRn KO mice are susceptible to ocular HSV-1 infection but HSV-1 0ΔNLS vaccinated FcRn KO mice are resistant suggesting that in addition to the FcRn, other pathways are involved in mediating the protective effect of the HSV-1 0ΔNLS vaccine against subsequent HSV-1 challenge.


Asunto(s)
Oftalmopatías/virología , Vacunas contra el Virus del Herpes Simple , Herpes Simple/prevención & control , Receptores Fc/genética , Animales , Linfocitos T CD8-positivos , Herpesvirus Humano 1 , Antígenos de Histocompatibilidad Clase I , Ratones , Ratones Endogámicos C57BL
9.
Invest Ophthalmol Vis Sci ; 61(12): 19, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33079993

RESUMEN

Purpose: The immune-privileged environment and complex organization of retinal tissue support the retina's essential role in visual function, yet confound inquiries into cell-specific inflammatory effects that lead to dysfunction and degeneration. Caveolin-1 (Cav1) is an integral membrane protein expressed in several retinal cell types and is implicated in immune regulation. However, whether Cav1 promotes or inhibits inflammatory processes in the retina (as well as in other tissues) remains unclear. Previously, we showed that global-Cav1 depletion resulted in reduced retinal inflammatory cytokine production but paradoxically elevated retinal immune cell infiltration. We hypothesized that these disparate responses are the result of differential cell-specific Cav1 functions in the retina. Methods: We used Cre/lox technology to deplete Cav1 specifically in the neural retinal (NR) compartment to clarify the role NR-specific Cav1 (NR-Cav1) in the retinal immune response to intravitreal inflammatory challenge induced by activation of Toll-like receptor-4 (TLR4). We used multiplex protein suspension array and flow cytometry to evaluate innate immune activation. Additionally, we used bioinformatics assessment of differentially expressed membrane-associated proteins to infer relationships between NR-Cav1 and immune response pathways. Results: NR-Cav1 depletion, which primarily affects Müller glia Cav1 expression, significantly altered immune response pathway regulators, decreased retinal inflammatory cytokine production, and reduced retinal immune cell infiltration in response to LPS-stimulated inflammatory induction. Conclusions: Cav1 expression in the NR compartment promotes the innate TLR4-mediated retinal tissue immune response. Additionally, we have identified novel potential immune modulators differentially expressed with NR-Cav1 depletion. This study further clarifies the role of NR-Cav1 in retinal inflammation.


Asunto(s)
Caveolina 1/fisiología , Inflamación/inducido químicamente , Lipopolisacáridos/toxicidad , Retina/metabolismo , Retinitis/inducido químicamente , Animales , Western Blotting , Caveolina 1/deficiencia , Citocinas/metabolismo , Sinergismo Farmacológico , Electrorretinografía , Citometría de Flujo , Inmunohistoquímica , Inflamación/metabolismo , Inflamación/patología , Inyecciones Intravítreas , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Nistagmo Optoquinético/fisiología , Proteómica , Retinitis/metabolismo , Retinitis/patología , Salmonella typhimurium , Receptor Toll-Like 4/metabolismo
10.
J Virol ; 94(24)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32999018

RESUMEN

The contribution of T cell and antibody responses following vaccination in resistance to herpes simplex virus 1 (HSV-1) infection continues to be rigorously investigated. In the present article, we explore the contribution of CD8+ T cells specific for the major antigenic epitope for HSV-1 glycoprotein B (gB498-505, gB) in C57BL/6 mice using a transgenic mouse (gBT-I.1) model vaccinated with HSV-1 0ΔNLS. gBT-I.1-vaccinated mice did not generate a robust neutralization antibody titer in comparison to the HSV-1 0ΔNLS-vaccinated wild-type C57BL/6 counterpart. Nevertheless, the vaccinated gBT-I.1 mice were resistant to ocular challenge with HSV-1 compared to vehicle-vaccinated animals based on survival and reduced corneal neovascularization but displayed similar levels of corneal opacity. Whereas there was no difference in the virus titer recovered from the cornea comparing vaccinated mice, HSV-1 0ΔNLS-vaccinated animals possessed significantly less infectious virus during acute infection in the trigeminal ganglia (TG) and brain stem compared to the control-vaccinated group. These results correlated with a significant increase in gB-elicited interferon-γ (IFN-γ), granzyme B, and CD107a and a reduction in lymphocyte activation gene 3 (LAG-3), programmed cell death 1 (PD-1), and T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) expressed by TG infiltrating gB-specific CD8+ T cells from the HSV-1 0ΔNLS-vaccinated group. Antibody depletion of CD8+ T cells in HSV-1 0ΔNLS-vaccinated mice rendered animals highly susceptible to virus-mediated mortality similar to control-vaccinated mice. Collectively, the HSV-1 0ΔNLS vaccine is effective against ocular HSV-1 challenge, reducing ocular neovascularization and suppressing peripheral nerve virus replication in the near absence of neutralizing antibody in this unique mouse model.IMPORTANCE The role of CD8+ T cells in antiviral efficacy using a live-attenuated virus as the vaccine is complicated by the humoral immune response. In the case of the herpes simplex virus 1 (HSV-1) 0ΔNLS vaccine, the correlate of protection has been defined to be primarily antibody driven. The current study shows that in the near absence of anti-HSV-1 antibody, vaccinated mice are protected from subsequent challenge with wild-type HSV-1 as measured by survival. The efficacy is lost following depletion of CD8+ T cells. Whereas increased survival and reduction in virus replication were observed in vaccinated mice challenged with HSV-1, cornea pathology was mixed with a reduction in neovascularization but no change in opacity. Collectively, the study suggests CD8+ T cells significantly contribute to the host adaptive immune response to HSV-1 challenge following vaccination with an attenuated virus, but multiple factors are involved in cornea pathology in response to ocular virus challenge.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Vacunas contra el Virus del Herpes Simple/inmunología , Herpes Simple/prevención & control , Herpesvirus Humano 1/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Vacunas Atenuadas/inmunología , Proteínas del Envoltorio Viral/metabolismo , Animales , Anticuerpos Antivirales , Linfocitos T CD8-positivos/inmunología , Córnea , Femenino , Herpes Simple/inmunología , Inmunización/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/virología , Vacunación , Proteínas del Envoltorio Viral/inmunología
11.
Immunohorizons ; 4(10): 608-626, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037098

RESUMEN

The protective efficacy of a live-attenuated HSV type 1 (HSV-1) vaccine, HSV-1 0∆ nuclear location signal (NLS), was evaluated in mice prophylactically in response to ocular HSV-1 challenge. Mice vaccinated with the HSV-1 0∆NLS were found to be more resistant to subsequent ocular virus challenge in terms of viral shedding, spread, the inflammatory response, and ocular pathology in a dose-dependent fashion. Specifically, a strong neutralizing Ab profile associated with low virus titers recovered from the cornea and trigeminal ganglia was observed in vaccinated mice in a dose-dependent fashion with doses ranging from 1 × 103 to 1 × 105 PFU HSV-1 0∆NLS. This correlation also existed in terms of viral latency in the trigeminal ganglia, corneal neovascularization, and leukocyte infiltration and expression of inflammatory cytokines and chemokines in infected tissue with the higher doses (1 × 104-1 × 105 PFU) of the HSV-1 0∆NLS-vaccinated mice, displaying reduced viral latency, ocular pathology, or inflammation in comparison with the lowest dose (1 × 103 PFU) or vehicle vaccine employed. Fifteen HSV-1-encoded proteins were uniquely recognized by antisera from high-dose (1 × 105 PFU)-vaccinated mice in comparison with low-dose (1 × 103 PFU)- or vehicle-vaccinated animals. Passive immunization using high-dose-vaccinated, but not low-dose-vaccinated, mouse sera showed significant efficacy against ocular pathology in HSV-1-challenged animals. In summary, we have identified the minimal protective dose of HSV-1 0∆NLS vaccine in mice to prevent HSV-mediated disease and identified candidate proteins that may be useful in the development of a noninfectious prophylactic vaccine against the insidious HSV-1 pathogen.


Asunto(s)
Córnea/patología , Vacunas contra el Virus del Herpes Simple/administración & dosificación , Vacunas contra el Virus del Herpes Simple/inmunología , Herpesvirus Humano 1/inmunología , Queratitis Herpética/inmunología , Queratitis Herpética/prevención & control , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Córnea/inmunología , Córnea/virología , Femenino , Herpesvirus Humano 1/patogenicidad , Inmunidad Humoral , Inmunización Pasiva , Queratitis Herpética/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Proteínas del Envoltorio Viral/administración & dosificación , Proteínas del Envoltorio Viral/inmunología , Esparcimiento de Virus
12.
Invest Ophthalmol Vis Sci ; 61(10): 24, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32785676

RESUMEN

Purpose: Corneal opacity and neovascularization (NV) are often described as outcomes of severe herpes simplex virus type 1 (HSV-1) infection. The current study investigated the role of colony-stimulating factor 1 receptor (CSF1R)+ cells and soluble factors in the progression of HSV-1-induced corneal NV and opacity. Methods: MaFIA mice were infected with 500 plaque-forming units of HSV-1 in the cornea following scarification. From day 10 to day 13 post-infection (pi), mice were treated with 40 µg/day of AP20187 (macrophage ablation) or vehicle intraperitoneally. For osteopontin (OPN) neutralization experiments, C57BL/6 mice were infected as above and treated with 2 µg of goat anti-mouse OPN or isotypic control IgG subconjunctivally every 2 days from day 4 to day 12 pi. Mice were euthanized on day 14 pi, and tissue was processed for immunohistochemistry to quantify NV and opacity by confocal microscopy and absorbance or detection of pro- and anti-angiogenic and inflammatory factors and cells by suspension array analysis and flow cytometry, respectively. Results: In the absence of CSF1R+ cells, HSV-1-induced blood and lymphatic vessel growth was muted. These results correlated with a loss in fibroblast growth factor type 2 (FGF-2) and an increase in OPN expression in the infected cornea. However, a reduction in OPN expression in mice did not alter corneal NV but significantly reduced opacity. Conclusions: Our data suggest that CSF1R+ cell depletion results in a significant reduction in HSV-1-induced corneal NV that correlates with the loss of FGF-2 expression. A reduction in OPN expression was aligned with a significant drop in opacity associated with reduced corneal collagen disruption.


Asunto(s)
Opacidad de la Córnea/virología , Herpesvirus Humano 1 , Queratitis Herpética/complicaciones , Osteopontina/metabolismo , Animales , Córnea/metabolismo , Córnea/virología , Neovascularización de la Córnea/metabolismo , Neovascularización de la Córnea/prevención & control , Neovascularización de la Córnea/virología , Opacidad de la Córnea/metabolismo , Opacidad de la Córnea/prevención & control , Citometría de Flujo , Queratitis Herpética/metabolismo , Ratones , Ratones Endogámicos C57BL
13.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630417

RESUMEN

Sjögren's Syndrome (SS), a chronic autoimmune disorder affecting multiple organ systems, is characterized by an elevated type I interferon (IFN) response. Activation of Stimulator of Interferon Genes (STING) protein induces type I IFN and in mice, several features of SS, including anti-nuclear antibodies, sialadenitis, and salivary gland dysfunction. Since lung involvement occurs in one-fifth of SS patients, we investigated whether systemic activation of STING also leads to lung inflammation. Lungs from female C57BL/6 mice injected with the STING agonist 5, 6-Dimethylxanthenone-4-acetic acid (DMXAA), were evaluated for acute and chronic inflammatory responses. Within 4h of DMXAA injection, the expression of Ifnb1, Il6, Tnf, Ifng, and Mx1 was significantly upregulated. At 1 and 2 months post-treatment, lungs showed lymphocytic infiltration in the peri-bronchial regions. The lungs from DMXAA treated mice showed an increased expression of multiple chemokines and an increase in lymphatic endothelial cells. Despite STING expression in bronchial epithelium and cells lining the alveolar wall, bone marrow chimeras between STING knockout and wild type mice showed that STING expression in hematopoietic cells was critical for lung inflammation. Our results suggest that activation of the STING pathway might be involved in SS patients with concomitant salivary gland and lung disease.


Asunto(s)
Proteínas de la Membrana/metabolismo , Síndrome de Sjögren/metabolismo , Animales , Anticuerpos Antinucleares , Autoanticuerpos , Quimiocinas/genética , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Inflamación/fisiopatología , Interferón Tipo I/genética , Interferón gamma/genética , Pulmón/patología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Síndrome de Sjögren/fisiopatología , Xantonas/farmacología
14.
Elife ; 82019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31414985

RESUMEN

Whether complement dysregulation directly contributes to the pathogenesis of peripheral nervous system diseases, including sensory neuropathies, is unclear. We addressed this important question in a mouse model of ocular HSV-1 infection, where sensory nerve damage is a common clinical problem. Through genetic and pharmacologic targeting, we uncovered a central role for C3 in sensory nerve damage at the morphological and functional levels. Interestingly, CD4 T cells were central in facilitating this complement-mediated damage. This same C3/CD4 T cell axis triggered corneal sensory nerve damage in a mouse model of ocular graft-versus-host disease (GVHD). However, this was not the case in a T-dependent allergic eye disease (AED) model, suggesting that this inflammatory neuroimmune pathology is specific to certain disease etiologies. Collectively, these findings uncover a central role for complement in CD4 T cell-dependent corneal nerve damage in multiple disease settings and indicate the possibility for complement-targeted therapeutics to mitigate sensory neuropathies.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Complemento C3/metabolismo , Factores Inmunológicos/metabolismo , Queratitis Herpética/complicaciones , Enfermedades Neurodegenerativas/fisiopatología , Células Receptoras Sensoriales/patología , Animales , Modelos Animales de Enfermedad , Ratones
15.
Cell Immunol ; 319: 28-34, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28711152

RESUMEN

CD28 is the major costimulatory receptor on T cells regulating proliferation, survival and effector function. Acquired mutations in the extracellular domain of CD28 have been identified in patients with cutaneous T cell lymphoma, angioimmunoblastic T cell lymphoma and other T cell neoplasms, suggesting it may contribute to disease pathogenesis. We used a heterologous system in which mutant human CD28 was expressed on primary murine T cells deficient in CD28 to ascertain how specific mutations identified in a genetic screen of patients with cutaneous T cell lymphoma affected normal T cell function. All three mutant CD28 proteins examined enhanced CD28-dependent T cell proliferation and effector function. These data suggest that the mutant CD28 isoforms could accelerate tumor cell growth and increase tumor burden in affected patients. Interruption of CD28:ligand interactions may be an effective, targeted therapy for a subset of patients whose tumors bear the mutant CD28 receptor.


Asunto(s)
Antígenos CD28/genética , Antígeno CTLA-4/genética , Linfoma Cutáneo de Células T/genética , Mutación , Linfocitos T/inmunología , Secuencia de Aminoácidos , Animales , Antígenos CD28/inmunología , Antígeno CTLA-4/inmunología , Proliferación Celular , Supervivencia Celular , ADN Complementario/genética , ADN Complementario/inmunología , Expresión Génica , Humanos , Activación de Linfocitos , Linfoma Cutáneo de Células T/inmunología , Linfoma Cutáneo de Células T/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/inmunología , Cultivo Primario de Células , Linfocitos T/patología , Transfección , Transgenes
16.
PLoS Pathog ; 11(7): e1005027, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26204259

RESUMEN

Impaired immune responses in the elderly lead to reduced vaccine efficacy and increased susceptibility to viral infections. Although several groups have documented age-dependent defects in adaptive immune priming, the deficits that occur prior to antigen encounter remain largely unexplored. Herein, we identify novel mechanisms for compromised adaptive immunity that occurs with aging in the context of infection with West Nile virus (WNV), an encephalitic flavivirus that preferentially causes disease in the elderly. An impaired IgM and IgG response and enhanced vulnerability to WNV infection during aging was linked to delayed germinal center formation in the draining lymph node (DLN). Adoptive transfer studies and two-photon intravital microscopy revealed a decreased trafficking capacity of donor naïve CD4+ T cells from old mice, which manifested as impaired T cell diapedesis at high endothelial venules and reduced cell motility within DLN prior to antigen encounter. Furthermore, leukocyte accumulation in the DLN within the first few days of WNV infection or antigen-adjuvant administration was diminished more generally in old mice and associated with a second aging-related defect in local cytokine and chemokine production. Thus, age-dependent cell-intrinsic and environmental defects in the DLN result in delayed immune cell recruitment and antigen recognition. These deficits compromise priming of early adaptive immune responses and likely contribute to the susceptibility of old animals to acute WNV infection.


Asunto(s)
Inmunidad Adaptativa/inmunología , Anticuerpos Antivirales/inmunología , Ganglios Linfáticos/virología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/aislamiento & purificación , Envejecimiento , Animales , Encéfalo/inmunología , Citocinas/metabolismo , Ganglios Linfáticos/inmunología , Ratones , Fiebre del Nilo Occidental/inmunología , Virus del Nilo Occidental/inmunología
17.
PLoS One ; 9(6): e98606, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24886983

RESUMEN

Immature dendritic cells (DCs) maintain a highly dynamic pool of recycling MHCII that promotes sampling of environmental antigens for presentation to T helper cells. However, the molecular basis of MHCII recycling and the cellular machinery that orchestrates MHCII trafficking are incompletely understood. Using a mouse model we show that WASH, an actin regulatory protein that facilitates retromer function, is essential for MHCII recycling and efficient priming of T helper cells. We further demonstrate that WASH deficiency results in impaired MHCII surface levels, recycling, and an accumulation of polyubiquitinated MHCII complexes, which are subsequently slated for premature lysosomal degradation. Consequently, conditional deletion of the Wash gene in DCs impairs priming of both conventional and autoimmune T helper cells in vivo and attenuates disease progression in a model of experimental autoimmune encephalitis (EAE). Thus, we identify a novel mechanism in which DCs employ the evolutionarily conserved WASH and retromer complex for MHCII recycling in order to regulate T helper cell priming.


Asunto(s)
Células Dendríticas/fisiología , Antígenos de Histocompatibilidad Clase II/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Secuencia de Bases , Cartilla de ADN , Encefalomielitis Autoinmune Experimental/inmunología , Ensayo de Inmunoadsorción Enzimática , Antígenos de Histocompatibilidad Clase II/metabolismo , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ubiquitinación
18.
PLoS One ; 8(10): e76145, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24155889

RESUMEN

Dap12 and FcRγ, the two transmembrane ITAM-containing signaling adaptors expressed in dendritic cells (DC), are implicated in the regulation of DC function. Several activating and adhesion receptors including integrins require these chains for their function in triggering downstream signaling and effector pathways, however the exact role(s) for Dap12 and FcRγ remains elusive as their loss can lead to both attenuating and enhancing effects. Here, we report that mice congenitally lacking both Dap12 and FcRγ chains (DF) show a massively enhanced effector CD8(+) T cell response to protein antigen immunization or West Nile Virus (WNV) infection. Thus, immunization of DF mice with MHCI-restricted OVA peptide leads to accumulation of IL-12-producing monocyte-derived dendritic cells (Mo-DC) in draining lymph nodes, followed by vastly enhanced generation of antigen-specific IFNγ-producing CD8(+) T cells. Moreover, DF mice show increased viral clearance in the WNV infection model. Depletion of CCR2+ monocytes/macrophages in vivo by administration anti-CCR2 antibodies or clodronate liposomes completely prevents the exaggerated CD8+ T cell response in DF mice. Mechanistically, we show that the loss of Dap12 and FcRγ-mediated signals in Mo-DC leads to a disruption of GM-CSF receptor-induced STAT5 activation resulting in upregulation of expression of IRF8, a transcription factor. Consequently, Dap12- and FcRγ-deficiency exacerbates GM-CSF-driven monocyte differentiation and production of inflammatory Mo-DC. Our data suggest a novel cross-talk between DC-ITAM and GM-CSF signaling pathways, which controls Mo-DC differentiation, IL-12 production, and CD8(+) T cell responses.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Linfocitos T CD8-positivos/metabolismo , Células Dendríticas/metabolismo , Interleucina-12/biosíntesis , Monocitos/citología , Receptores CCR2/metabolismo , Receptores de IgG/deficiencia , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antígenos Virales/inmunología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Proliferación Celular/efectos de los fármacos , Reactividad Cruzada/efectos de los fármacos , Reactividad Cruzada/inmunología , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Ratones , Ratones Endogámicos C57BL , Receptores de IgG/metabolismo , Transducción de Señal/efectos de los fármacos , Receptores Toll-Like/metabolismo , Virus del Nilo Occidental/efectos de los fármacos , Virus del Nilo Occidental/inmunología
19.
Arch Gynecol Obstet ; 288(4): 805-14, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23553197

RESUMEN

PURPOSE: To determine, with extended receiver operating characteristic (ROC) curve analysis, the diagnostic value of cytokines showing significantly different peritoneal concentrations between women with and without endometriosis. METHODS: Multiplex cytokine concentration measurement of IL-2, IL-4, IL-6, IL-10, TNF-α and IFN-γ levels in peritoneal fluid of women with minimal to mild (n = 10) and moderate to severe (n = 26) endometriosis, and 42 controls. RESULTS: Only IL-6 and IL-10 concentrations were significantly higher in endometriosis patients than in controls. Specifically, significantly higher IL-6 and IL-10 levels were found in moderate to severe but not in minimal to mild endometriosis as compared to controls. For evaluation of diagnostic significance, ROC analysis determined discriminating parameters for IL-6, while those calculated for IL-10 were useless. Importantly, ROC analysis for IL-6 levels limited to women with moderate to severe endometriosis showed the highest area under the curve with the sample size sufficient to achieve 90 % power of the test. Finally, extended ROC including cost of analysis for this group of patients determined the optimal cut-off leading to high specificity and positive likelihood ratio resulting in 79 % effectiveness of the test. CONCLUSIONS: While our outcomes show moderate usefulness of peritoneal IL-6 levels in discrimination of moderate to severe endometriosis, further studies might be needed to determine the usefulness of peritoneal IL-6 levels in detection of early stages of endometriosis, as such a finding would be more relevant in clinical decision making.


Asunto(s)
Líquido Ascítico/metabolismo , Endometriosis/diagnóstico , Interleucina-6/metabolismo , Adulto , Biomarcadores/metabolismo , Estudios de Casos y Controles , Citocinas/metabolismo , Endometriosis/metabolismo , Femenino , Humanos , Interleucina-10/metabolismo , Curva ROC , Índice de Severidad de la Enfermedad , Regulación hacia Arriba
20.
Eur J Immunol ; 43(5): 1185-94, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23436244

RESUMEN

Mammalian ortholog of Drosophila cell polarity protein, Dlg1, plays a critical role in neural synapse formation, epithelial cell homeostasis, and urogenital development. More recently, it has been proposed that Dlg1 may also be involved in the regulation of T-cell proliferation, migration, and Ag-receptor signaling. However, a requirement for Dlg1 in development and function of T lineage cells remains to be established. In this study, we investigated a role for Dlg1 during T-cell development and function using a combination of conditional Dlg1 KO and two different Cre expression systems where Dlg1 deficiency is restricted to the T-cell lineage only, or all hematopoietic cells. Here, using three different TCR models, we show that Dlg1 is not required during development and selection of thymocytes bearing functionally rearranged TCR transgenes. Moreover, Dlg1 is dispensable in the activation and proliferative expansion of Ag-specific TCR-transgenic CD4(+) and CD8(+) T cells in vitro and in vivo. Surprisingly, however, we show that Dlg1 is required for normal generation of memory T cells during endogenous response to cognate Ag. Thus, Dlg1 is not required for the thymocyte selection or the activation of primary T cells, however it is involved in the generation of memory T cells.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Linfocitos T CD8-positivos/citología , Linaje de la Célula/inmunología , Memoria Inmunológica , Proteínas del Tejido Nervioso/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Traslado Adoptivo , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Polaridad Celular , Proliferación Celular , Homólogo 1 de la Proteína Discs Large , Expresión Génica , Integrasas , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Ovalbúmina/administración & dosificación , Ovalbúmina/inmunología , Receptores de Antígenos de Linfocitos T/genética , Proteínas Asociadas a SAP90-PSD95 , Timocitos/citología , Timocitos/inmunología , Timocitos/trasplante , Timo/citología , Timo/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...