Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Metab ; 5(8): 1423-1439, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37550596

RESUMEN

Robust and effective T cell immune surveillance and cancer immunotherapy require proper allocation of metabolic resources to sustain energetically costly processes, including growth and cytokine production. Here, we show that asparagine (Asn) restriction on CD8+ T cells exerted opposing effects during activation (early phase) and differentiation (late phase) following T cell activation. Asn restriction suppressed activation and cell cycle entry in the early phase while rapidly engaging the nuclear factor erythroid 2-related factor 2 (NRF2)-dependent stress response, conferring robust proliferation and effector function on CD8+ T cells during differentiation. Mechanistically, NRF2 activation in CD8+ T cells conferred by Asn restriction rewired the metabolic program by reducing the overall glucose and glutamine consumption but increasing intracellular nucleotides to promote proliferation. Accordingly, Asn restriction or NRF2 activation potentiated the T cell-mediated antitumoral response in preclinical animal models, suggesting that Asn restriction is a promising and clinically relevant strategy to enhance cancer immunotherapy. Our study revealed Asn as a critical metabolic node in directing the stress signaling to shape T cell metabolic fitness and effector functions.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Asparagina/metabolismo , Glucosa/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo
2.
Sci Immunol ; 7(70): eabm8161, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35486677

RESUMEN

Effective T cell-mediated immune responses require the proper allocation of metabolic resources to sustain growth, proliferation, and cytokine production. Epigenetic control of the genome also governs T cell transcriptome and T cell lineage commitment and maintenance. Cellular metabolic programs interact with epigenetic regulation by providing substrates for covalent modifications of chromatin. By using complementary genetic, epigenetic, and metabolic approaches, we revealed that tricarboxylic acid (TCA) cycle flux fueled biosynthetic processes while controlling the ratio of succinate/α-ketoglutarate (α-KG) to modulate the activities of dioxygenases that are critical for driving T cell inflammation. In contrast to cancer cells, where succinate dehydrogenase (SDH)/complex II inactivation drives cell transformation and growth, SDH/complex II deficiency in T cells caused proliferation and survival defects when the TCA cycle was truncated, blocking carbon flux to support nucleoside biosynthesis. Replenishing the intracellular nucleoside pool partially relieved the dependence of T cells on SDH/complex II for proliferation and survival. SDH deficiency induced a proinflammatory gene signature in T cells and promoted T helper 1 and T helper 17 lineage differentiation. An increasing succinate/α-KG ratio in SDH-deficient T cells promoted inflammation by changing the pattern of the transcriptional and chromatin accessibility signatures and consequentially increasing the expression of the transcription factor, PR domain zinc finger protein 1. Collectively, our studies revealed a role of SDH/complex II in allocating carbon resources for anabolic processes and epigenetic regulation in T cell proliferation and inflammation.


Asunto(s)
Epigénesis Genética , Succinato Deshidrogenasa , Proliferación Celular , Cromatina , Complejo II de Transporte de Electrones/deficiencia , Humanos , Inflamación/genética , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacología , Errores Innatos del Metabolismo , Enfermedades Mitocondriales , Nucleósidos , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Succinatos
3.
Toxicol Appl Pharmacol ; 410: 115359, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33290779

RESUMEN

Many antineoplastic agents induce myelosuppression and leukopenia as secondary effects in patients. The development of anticancer agents that simultaneously provoke antitumor immune response represents an important therapeutic advance. The administration of 6-pentadecyl salicylic acid (6SA) contributes to the antitumor immunity using 4T1 breast cancer cells in Balb/c female mice, with Taxol as a positive control and in cotreatment with 6SA (6SA + Taxol; CoT). Our results show that 6SA reduces tumor volume and size by inducing caspase-8-mediated apoptosis without reducing tumor infiltrated lymphocytes. Also, 6SA reduced lung metastasis and increased the proportion of immune cells in blood, lymph nodes and bone marrow; more evidently, in the proportion of tumor-infiltrated natural killer (NK) cells and cytotoxic T lymphocytes. Taxol reduces helper and cytotoxic lymphocytes causing systemic immunosuppression and myelosuppression in bone marrow, whereas 6SA does not decrease any immune cell subpopulations in circulating blood and lymph nodes. More importantly, the CoT decreased the Taxol-induced cytotoxicity in circulating T cells and bone marrow. Treatment with 6SA increases the secretion of IL-2, IL-12, GM-CSF, TNF-α and IFN-γ and significantly reduces IL-10 and IL-17 secretion, suggesting that the reduction of regulatory T cells and tumor-associated macrophages contribute to the host control of tumor development. Finally, 6SA has an effective antineoplastic activity against breast cancer cells in an immunocompetent animal, reduces the myelosuppression and leukopenia that Taxol produces, improves the antitumoral immunological microenvironment and increases the overall survival of the animals improving the quality of life of patients with cancer.


Asunto(s)
Ácidos Anacárdicos/uso terapéutico , Antineoplásicos Fitogénicos/toxicidad , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Inmunización/métodos , Paclitaxel/toxicidad , Ácidos Anacárdicos/farmacología , Animales , Apoptosis/inmunología , Neoplasias de la Mama/sangre , Neoplasias de la Mama/inmunología , Línea Celular Tumoral , Femenino , Inmunidad Celular/efectos de los fármacos , Inmunidad Celular/fisiología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H
4.
Nat Metab ; 2(7): 635-647, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32694789

RESUMEN

T cells undergo metabolic rewiring to meet their bioenergetic, biosynthetic and redox demands following antigen stimulation. To fulfil these needs, effector T cells must adapt to fluctuations in environmental nutrient levels at sites of infection and inflammation. Here, we show that effector T cells can utilize inosine, as an alternative substrate, to support cell growth and function in the absence of glucose in vitro. T cells metabolize inosine into hypoxanthine and phosphorylated ribose by purine nucleoside phosphorylase. We demonstrate that the ribose subunit of inosine can enter into central metabolic pathways to provide ATP and biosynthetic precursors, and that cancer cells display diverse capacities to utilize inosine as a carbon source. Moreover, the supplementation with inosine enhances the anti-tumour efficacy of immune checkpoint blockade and adoptive T-cell transfer in solid tumours that are defective in metabolizing inosine, reflecting the capability of inosine to relieve tumour-imposed metabolic restrictions on T cells.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Carbono/metabolismo , Glucosa/deficiencia , Inosina/metabolismo , Traslado Adoptivo , Animales , Línea Celular Tumoral , Células HeLa , Humanos , Hipoxantina/metabolismo , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Nutrientes , Purina-Nucleósido Fosforilasa/metabolismo , Ribosa/metabolismo
5.
Front Oncol ; 9: 322, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31114756

RESUMEN

The adoptive transfer of T cells expressing chimeric antigen receptors (CARs) through genetic engineering is one of the most promising new therapies for treating cancer patients. A robust CAR T cell-mediated anti-tumor response requires the coordination of nutrient and energy supplies with CAR T cell expansion and function. However, the high metabolic demands of tumor cells compromise the function of CAR T cells by competing for nutrients within the tumor microenvironment (TME). To substantially improve clinical outcomes of CAR T immunotherapy while treating solid tumors, it is essential to metabolically prepare CAR T cells to overcome the metabolic barriers imposed by the TME. In this review, we discuss a potential metabolism toolbox to improve the metabolic fitness of CAR T cells and maximize the efficacy of CAR T therapy.

6.
Toxicol Appl Pharmacol ; 376: 82-92, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31129177

RESUMEN

Anacardic 6-pentadecyl salicylic acid (6SA) is the active component of Amphipterygium adstringens, a plant used in traditional medicine for the treatment of malaria and vascular diseases and as an anti-bacterial and immune-modulatory agent. However, the effect of 6SA on the immune system remains unclear. In this study, we examined the immune-stimulatory activity of 6SA in 6-8-week-old female BALB/c mice. We found that treatment with 2 mg/kg of 6SA increased the proportions of macrophages after 7 and 14 days of treatment and of natural killer (NK) cells after 14 days of treatment in circulating blood. In lymph nodes, treatment with 6SA for 14 days increased the number of macrophages. In addition, 6SA increases in the systemic levels of pro-inflammatory cytokines such as tumour necrosis factor (TNF)-α, interleukin (IL)-2, IL-12, IL-6 and IL-1ß and of nitric oxide (NO). We observed an increase in the secretion of Granulocyte/Macrophage Colony Stimulation Factor (GM-CSF) that could explain the increase in the proportion of macrophages. Moreover, 6SA induced the classical activation of macrophages by increasing their expression of MHC-II and their production of TNF-α. These M1-polarised macrophages presented enhanced phagocytosis and NO secretion. This activation was due to induction of the phosphorylation of MAPKs such as ERK, JNK and p38 because specific inhibitors of the phosphorylation of these MAPKs reduced the 6SA-induced phagocytosis and NO and particularly, the secretion of GM-CSF in macrophages by inhibition of ERK. Despite these effects on macrophages, 6SA does not have any direct effect on the proportion of lymphocytes.


Asunto(s)
Ácidos Anacárdicos/farmacología , Sistema Inmunológico/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , Recuento de Células , Activación Enzimática/efectos de los fármacos , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Células Asesinas Naturales/efectos de los fármacos , Recuento de Leucocitos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Fagocitosis/efectos de los fármacos , Fosforilación/efectos de los fármacos
7.
Cytokine Growth Factor Rev ; 35: 63-70, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28363691

RESUMEN

Upon antigen stimulation, quiescent naive T cells undergo a phase of cell mass accumulation followed by cell cycle entry, clonal expansion, differentiation into functional subsets and back again to a quiescent state as they develop into memory cells. The transitions between these distinct cellular states place unique metabolic demands on energy, redox and biosynthesis. To fulfill these demands, T cells switch back and forth between their primary catabolic pathways. While quiescent naive and memory T cells largely rely on the oxidation of fatty acids and glucose, active T cells rely on glycolysis and glutaminolysis to sustain cell growth, proliferation and differentiation. Beyond several key signaling kinase cascades, the hypoxia inducible factor 1 (HIF-1) and the proto-oncogene MYC, act alone or in concert, to coordinate T cell metabolic reprogramming, cell proliferation, functional differentiation and apoptosis, enabling a robust T cell-mediated adaptive immune response.


Asunto(s)
Inmunidad Adaptativa , Genes myc , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Glucosa/metabolismo , Glucólisis , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Activación de Linfocitos , Proto-Oncogenes Mas , Transducción de Señal
8.
Genes (Basel) ; 8(3)2017 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-28245597

RESUMEN

Myelocytomatosis oncogene (MYC) family members, including cellular MYC (c-Myc), neuroblastoma derived MYC (MYCN), and lung carcinoma derived MYC (MYCL), have all been implicated as key oncogenic drivers in a broad range of human cancers. Beyond cancer, MYC plays an important role in other physiological and pathological processes, namely immunity and immunological diseases. MYC largely functions as a transcription factor that promotes the expression of numerous target genes to coordinate death, proliferation, and metabolism at the cellular, tissue, and organismal levels. It has been shown that the expression of MYC family members is tightly regulated in immune cells during development or upon immune stimulations. Emerging evidence suggests that MYC family members play essential roles in regulating the development, differentiation and activation of immune cells. Through driving the expression of a broad range of metabolic genes in immune cells, MYC family members coordinate metabolic programs to support immune functions. Here, we discuss our understanding of MYC biology in immune system and how modulation of MYC impacts immune metabolism and responses.

9.
Int Immunopharmacol ; 29(2): 808-817, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26371858

RESUMEN

Amphipterygium adstringens is a plant traditionally used to treat gingivitis, gastric ulcer and even gastric cancer but the mechanism involved in the regulation of the immune response is not elucidated yet. The 6-pentadecylsalicylic acid (6SA) is the main anacardic acid found in A. adstringens. In order to evaluate the immune-modulatory abilities of 6SA, we used mouse splenocytes and determined the phosphorylation of the transcription factor NF-κB and MAP kinases ERK1/2, JNK and p38 in helper and cytotoxic T cells, natural killer (NK) cells and F4/80(+) macrophages. Treatment with 6SA was not cytotoxic as measured by both trypan blue exclusion and tetrazolium salts (MTT) tests. Additionally, 6SA did not alter the proportion of helper and cytotoxic T lymphocytes, NK cells or macrophages. Moreover, 6SA treatment significantly increased the phosphorylation of ERK1/2, JNK, P38 and NF-κB mainly in macrophages. In this cells (peritoneal macrophages), treatment with 6SA increased the secretion of nitric oxide (NO), interleukin (IL)-6 and tumour necrosis factor (TNF)-α and decreased the secretion of IL-4 and IL-10 depending on MAPK and NF-κB phosphorylation. In addition, 6SA increased the migration and phagocytic activity of macrophages also depending on the phosphorylation of different kinases. These data suggest that 6SA induces the classical activation pathway in macrophages via the phosphorylation of MAP kinases and NF-κB thus activating the adaptive immune system.


Asunto(s)
Ácidos Anacárdicos/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , FN-kappa B/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/efectos de los fármacos , Animales , Citocinas/análisis , Citocinas/biosíntesis , Factores Inmunológicos/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Fagocitosis/efectos de los fármacos , Fosforilación/efectos de los fármacos , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA