Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(3): eabj6901, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35061543

RESUMEN

Hemophilia is a hereditary disease that remains incurable. Although innovative treatments such as gene therapy or bispecific antibody therapy have been introduced, substantial unmet needs still exist with respect to achieving long-lasting therapeutic effects and treatment options for inhibitor patients. Antithrombin (AT), an endogenous negative regulator of thrombin generation, is a potent genome editing target for sustainable treatment of patients with hemophilia A and B. In this study, we developed and optimized lipid nanoparticles (LNPs) to deliver Cas9 mRNA along with single guide RNA that targeted AT in the mouse liver. The LNP-mediated CRISPR-Cas9 delivery resulted in the inhibition of AT that led to improvement in thrombin generation. Bleeding-associated phenotypes were recovered in both hemophilia A and B mice. No active off-targets, liver-induced toxicity, and substantial anti-Cas9 immune responses were detected, indicating that the LNP-mediated CRISPR-Cas9 delivery was a safe and efficient approach for hemophilia therapy.


Asunto(s)
Hemofilia A , Nanopartículas , Animales , Antitrombinas , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Hemofilia A/genética , Hemofilia A/terapia , Humanos , Liposomas , Ratones , Trombina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...