Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 129: 155641, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38718639

RESUMEN

BACKGROUND: The limited regenerative capacity of injured axons hinders functional recovery after nerve injury. Although no drugs are currently available in the clinic to accelerate axon regeneration, recent studies show the potential of vasohibin inhibition by parthenolide, produced in Tanacetum parthenium, to accelerate axon regeneration. However, due to its poor oral bioavailability, parthenolide is limited to parenteral administration. PURPOSE: This study investigates another sesquiterpene lactone, cnicin, produced in Cnicus benedictus for promoting axon regeneration. RESULTS: Cnicin is equally potent and effective in facilitating nerve regeneration as parthenolide. In culture, cnicin promotes axon growth of sensory and CNS neurons from various species, including humans. Neuronal overexpression of vasohibin increases the effective concentrations comparable to parthenolide, suggesting an interaction between cnicin and vasohibin. Remarkably, intravenous administration of cnicin significantly accelerates functional recovery after severe nerve injury in various species, including the anastomosis of severed nerves. Pharmacokinetic analysis of intravenously applied cnicin shows a blood half-life of 12.7 min and an oral bioavailability of 84.7 % in rats. Oral drug administration promotes axon regeneration and recovery after nerve injury in mice. CONCLUSION: These results highlight the potential of cnicin as a promising drug to treat axonal insults and improve recovery.


Asunto(s)
Regeneración Nerviosa , Sesquiterpenos , Animales , Humanos , Masculino , Ratones , Ratas , Axones/efectos de los fármacos , Axones/fisiología , Disponibilidad Biológica , Proteínas de Ciclo Celular/metabolismo , Lactonas/farmacología , Regeneración Nerviosa/efectos de los fármacos , Ratas Sprague-Dawley , Sesquiterpenos/farmacología
2.
J Neurosci ; 44(14)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38429108

RESUMEN

Treatments accelerating axon regeneration in the nervous system are still clinically unavailable. However, parthenolide promotes adult sensory neurons' axon growth in culture by inhibiting microtubule detyrosination. Here, we show that overexpression of vasohibins increases microtubule detyrosination in growth cones and compromises growth in culture and in vivo. Moreover, overexpression of these proteins increases the required parthenolide concentrations to promote axon regeneration. At the same time, the partial knockdown of endogenous vasohibins or their enhancer SVBP in neurons facilitates axon growth, verifying them as pharmacological targets for promoting axon growth. In vivo, repeated intravenous application of parthenolide or its prodrug di-methyl-amino-parthenolide (DMAPT) markedly facilitates the regeneration of sensory, motor, and sympathetic axons in injured murine and rat nerves, leading to acceleration of functional recovery. Moreover, orally applied DMAPT was similarly effective in promoting nerve regeneration. Thus, pharmacological inhibition of vasohibins facilitates axon regeneration in different species and nerves, making parthenolide and DMAPT the first promising drugs for curing nerve injury.


Asunto(s)
Axones , Sesquiterpenos , Ratones , Ratas , Animales , Axones/fisiología , Regeneración Nerviosa/fisiología , Microtúbulos/metabolismo , Sesquiterpenos/farmacología , Sesquiterpenos/metabolismo
3.
Brain Commun ; 6(2): fcae059, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482371

RESUMEN

Experimental autoimmune neuritis is a common animal model for acute human immune-mediated polyneuropathies. Although already established in 1955, a number of pathophysiological mechanisms remain unknown. In this study, we extensively characterize experimental autoimmune neuritis progression in Lewis rats, including new insights into the integrity of small nerve fibres, neuropathic pain and macrophage activation. Acute experimental autoimmune neuritis was induced with P253-78 peptide and consequently investigated using the gait analysis system CatWalk XT, electrophysiological and histopathological analyses, quantitative polymerase chain reaction (PCR), dorsal root ganglia outgrowth studies, as well as the von Frey hair and Hargreaves tests. For the longitudinal setup, rats were sacrificed at Day (d) 10 (onset), d15 (peak), d26 (recovery) and d29 (late recovery). We confirmed the classical T-cell and macrophage-driven inflammation and the primarily demyelinating nature of the experimental autoimmune neuritis. The dual role of macrophages in experimental autoimmune neuritis is implicated by the high number of remaining macrophages throughout disease progression. Furthermore, different subpopulations of macrophages based on Cx3-motif chemokine receptor 1 (Cx3cr1), platelet factor 4 (Pf4) and macrophage galactose-type lectin-1 (Mgl1) expressions were identified. In addition, modulation of the sensory system in experimental autoimmune neuritis was detected. An outgrowth of small fibres in the plantar skin at the onset and peak of the experimental autoimmune neuritis was evident parallel to the development of acute hyperalgesia mediated through transient receptor potential vanilloid 1 modulation. Our data depict experimental autoimmune neuritis as a primary demyelinating disease with implicated axonal damage, a small unmyelinated fibre impairment throughout the disease progression course, and underline the pivotal role of macrophages in the effector and during the recovery stage.

4.
Elife ; 122023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37846146

RESUMEN

Injured axons in the central nervous system (CNS) usually fail to regenerate, causing permanent disabilities. However, the knockdown of Pten knockout or treatment of neurons with hyper-IL-6 (hIL-6) transforms neurons into a regenerative state, allowing them to regenerate axons in the injured optic nerve and spinal cord. Transneuronal delivery of hIL-6 to the injured brain stem neurons enables functional recovery after severe spinal cord injury. Here we demonstrate that the beneficial hIL-6 and Pten knockout effects on axon growth are limited by the induction of tubulin detyrosination in axonal growth cones. Hence, cotreatment with parthenolide, a compound blocking microtubule detyrosination, synergistically accelerates neurite growth of cultured murine CNS neurons and primary RGCs isolated from adult human eyes. Systemic application of the prodrug dimethylamino-parthenolide (DMAPT) facilitates axon regeneration in the injured optic nerve and spinal cord. Moreover, combinatorial treatment further improves hIL-6-induced axon regeneration and locomotor recovery after severe SCI. Thus, DMAPT facilitates functional CNS regeneration and reduces the limiting effects of pro-regenerative treatments, making it a promising drug candidate for treating CNS injuries.


Asunto(s)
Axones , Traumatismos de la Médula Espinal , Ratones , Animales , Humanos , Axones/fisiología , Regeneración Nerviosa , Neuronas/fisiología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Microtúbulos
5.
Brain Commun ; 3(4): fcab238, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34708206

RESUMEN

Proteasome inhibition with bortezomib has been reported to exert an immunomodulatory action in chronic autoimmune neuropathies. However, bortezomib used for the treatment of multiple myeloma induces a painful toxic polyneuropathy at a higher concentration. Therefore, we addressed this controversial effect and evaluated the neurotoxic and immunomodulatory mode of action of bortezomib in experimental autoimmune neuritis. Bortezomib-induced neuropathy was investigated in Lewis rats using the von Frey hair test, electrophysiological, qPCR and histological analyses of the sciatic nerve as well as dorsal root ganglia outgrowth studies. The immunomodulatory potential of bortezomib was characterized in Lewis rats after experimental autoimmune neuritis induction with P253-78 peptide. Clinical, electrophysiological, histological evaluation, von Frey hair test, flow cytometric and mRNA analyses were used to unravel the underlying mechanisms. We defined the toxic concentration of 0.2 mg/kg bortezomib applied intraperitoneally at Days 0, 4, 8 and 12. This dosage induces a painful toxic neuropathy but preserves axonal regeneration in vitro. Bortezomib at a concentration of 0.05 mg/kg significantly ameliorated experimental autoimmune neuritis symptoms, improved experimental autoimmune neuritis-induced hyperalgesia and nerve conduction studies, and reduced immune cell infiltration. Furthermore, proteasome inhibition induced a transcriptional downregulation of Nfkb in the sciatic nerve, while its inhibitor Ikba (also known as Nfkbia) was upregulated. Histological analyses of bone marrow tissue revealed a compensatory increase of CD138+ plasma cells. Our data suggest that low dose bortezomib (0.05 mg/kg intraperitoneally) has an immunomodulatory effect in the context of experimental autoimmune neuritis through proteasome inhibition and downregulation of nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NFKB). Higher bortezomib concentrations (0.2 mg/kg intraperitoneally) induce sensory neuropathy; however, the regeneration potential remains unaffected. Our data empathizes that bortezomib may serve as an attractive treatment option for inflammatory neuropathies in lower concentrations.

6.
Nat Commun ; 12(1): 391, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452250

RESUMEN

Spinal cord injury (SCI) often causes severe and permanent disabilities due to the regenerative failure of severed axons. Here we report significant locomotor recovery of both hindlimbs after a complete spinal cord crush. This is achieved by the unilateral transduction of cortical motoneurons with an AAV expressing hyper-IL-6 (hIL-6), a potent designer cytokine stimulating JAK/STAT3 signaling and axon regeneration. We find collaterals of these AAV-transduced motoneurons projecting to serotonergic neurons in both sides of the raphe nuclei. Hence, the transduction of cortical neurons facilitates the axonal transport and release of hIL-6 at innervated neurons in the brain stem. Therefore, this transneuronal delivery of hIL-6 promotes the regeneration of corticospinal and raphespinal fibers after injury, with the latter being essential for hIL-6-induced functional recovery. Thus, transneuronal delivery enables regenerative stimulation of neurons in the deep brain stem that are otherwise challenging to access, yet highly relevant for functional recovery after SCI.


Asunto(s)
Terapia Genética/métodos , Interleucina-6/genética , Locomoción/fisiología , Regeneración Nerviosa/fisiología , Traumatismos de la Médula Espinal/terapia , Animales , Axones/fisiología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Quinasas Janus/metabolismo , Masculino , Ratones , Ratones Noqueados , Microinyecciones , Neuronas Motoras/fisiología , Fosfohidrolasa PTEN/genética , Núcleos del Rafe/citología , Núcleos del Rafe/fisiología , Recuperación de la Función , Factor de Transcripción STAT3/metabolismo , Neuronas Serotoninérgicas/fisiología , Índice de Severidad de la Enfermedad , Transducción de Señal , Médula Espinal/citología , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos de la Médula Espinal/fisiopatología , Transducción Genética
7.
Nat Prod Rep ; 37(4): 541-565, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31763637

RESUMEN

Review covering up to 07/2019(-)-Parthenolide is a germacrane sesquiterpene lactone, available in ample amounts from the traditional medical plant feverfew (Tanacetum parthenium). Acting as a covalently reactive compound, it displays anti-inflammatory, redox-modulating, and epigenetic activities, as well as selective cytotoxicity towards cancer stem and progenitor cells. Furthermore, parthenolide was found to modulate microtubule dynamics by interfering with the detyrosination of α-tubulin, a specific posttranslational modification of the cytoskeleton. This review interfaces recently achieved parthenolide syntheses with strategies for bioactivity-based derivatization. Furthermore, chemical probe development from parthenolide is discussed, leading to a qualified summary of reported biological activities and implicated or identified targets. Special emphasis is given to parthenolide-induced microtubule modulation and the recently characterized tubulin carboxypeptidase enzymes involved in nerve (re)growth, cardiac muscle cell function, and metastasis development.


Asunto(s)
Sesquiterpenos/química , Sesquiterpenos/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Carboxipeptidasas/antagonistas & inhibidores , Ciclización , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estructura Molecular , Sesquiterpenos/síntesis química , Sesquiterpenos/metabolismo , Sesquiterpenos de Germacrano/química , Estereoisomerismo
8.
Org Biomol Chem ; 17(45): 9703-9707, 2019 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-31701984

RESUMEN

Parthenolide (PTL) strongly inhibits the detyrosination of microtubules and accelerates neuronal growth. In order to access cyclic ether derivatives of PTL, ring-closing metathesis (RCM) was investigated in comparison to intramolecular sulfone alkylation. Incompatibility of RCM with epoxides was found in this setting. Biological evaluation for tubulin carboxypeptidase inhibition indicated that the epoxide is crucial for parthenolide's activity.


Asunto(s)
Carboxipeptidasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Éter/farmacología , Microtúbulos/efectos de los fármacos , Neuronas/efectos de los fármacos , Sesquiterpenos/farmacología , Adulto , Carboxipeptidasas/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Éter/síntesis química , Éter/química , Humanos , Estructura Molecular , Sesquiterpenos/síntesis química , Sesquiterpenos/química , Relación Estructura-Actividad , Tanacetum parthenium/química
9.
Chem Sci ; 10(31): 7358-7364, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31489157

RESUMEN

The 2-(silyloxymethyl)allylboration of aldehydes was established to enable stereoselective access to α-(exo)-methylene γ-butyrolactones under mild conditions. Acid-labile functionality and chiral carbonyl compounds are tolerated. Excellent asymmetric induction was observed for ß,ß'-disubstituted α,ß-epoxy aldehydes. These findings led to the enantioselective total synthesis of the sesquiterpene natural product (-)-parthenolide, its unnatural (+)-enantiomer, and diastereoisomers. Among all the isomers tested in cell culture, only (-)-parthenolide showed potent inhibition of microtubule detyrosination in living cells, confirming its exquisite selectivity on tubulin carboxypeptidase activity. On the other hand, the anti-inflammatory activity of the parthenolides was weaker and less selective with regard to compound stereochemistry.

10.
Cell Rep ; 26(4): 1021-1032.e6, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30673598

RESUMEN

Muscle LIM protein (MLP) has long been regarded as a muscle-specific protein. Here, we report that MLP expression is induced in adult rat retinal ganglion cells (RGCs) upon axotomy, and its expression is correlated with their ability to regenerate injured axons. Specific knockdown of MLP in RGCs compromises axon regeneration, while overexpression in vivo facilitates optic nerve regeneration and regrowth of sensory neurons without affecting neuronal survival. MLP accumulates in the cell body, the nucleus, and in axonal growth cones, which are significantly enlarged by its overexpression. Only the MLP fraction in growth cones is relevant for promoting axon extension. Additional data suggest that MLP acts as an actin cross-linker, thereby facilitating filopodia formation and increasing growth cone motility. Thus, MLP-mediated effects on actin could become a therapeutic strategy for promoting nerve repair.


Asunto(s)
Sistema Nervioso Central/metabolismo , Regulación de la Expresión Génica , Conos de Crecimiento/metabolismo , Proteínas con Dominio LIM/biosíntesis , Proteínas Musculares/biosíntesis , Regeneración Nerviosa , Nervio Óptico/fisiología , Células Ganglionares de la Retina/metabolismo , Proteínas de Transporte Vesicular/biosíntesis , Animales , Axotomía , Células COS , Sistema Nervioso Central/patología , Chlorocebus aethiops , Proteínas con Dominio LIM/genética , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Ratas , Células Ganglionares de la Retina/patología , Proteínas de Transporte Vesicular/genética
11.
Sci Rep ; 7(1): 643, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28377582

RESUMEN

Muscle lim protein (MLP) has long been regarded as a cytosolic and nuclear muscular protein. Here, we show that MLP is also expressed in a subpopulation of adult rat dorsal root ganglia (DRG) neurons in response to axonal injury, while the protein was not detectable in naïve cells. Detailed immunohistochemical analysis of L4/L5 DRG revealed ~3% of MLP-positive neurons 2 days after complete sciatic nerve crush and maximum ~10% after 4-14 days. Similarly, in mixed cultures from cervical, thoracic, lumbar and sacral DRG ~6% of neurons were MLP-positive after 2 days and maximal 17% after 3 days. In both, histological sections and cell cultures, the protein was detected in the cytosol and axons of small diameter cells, while the nucleus remained devoid. Moreover, the vast majority could not be assigned to any of the well characterized canonical DRG subpopulations at 7 days after nerve injury. However, further analysis in cell culture revealed that the largest population of MLP expressing cells originated from non-peptidergic IB4-positive nociceptive neurons, which lose their ability to bind the lectin upon axotomy. Thus, MLP is mostly expressed in a subset of axotomized nociceptive neurons and can be used as a novel marker for this population of cells.


Asunto(s)
Axones/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Expresión Génica , Proteínas con Dominio LIM/genética , Proteínas Musculares/genética , Neuronas/metabolismo , Traumatismos de los Nervios Periféricos/etiología , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Línea Celular , Células Cultivadas , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Humanos , Proteínas con Dominio LIM/metabolismo , Masculino , Proteínas Musculares/metabolismo , Ratas
12.
Mol Ther ; 24(10): 1712-1725, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27203446

RESUMEN

Retinal ganglion cells (RGCs) do not normally regenerate injured axons, but die upon axotomy. Although IL-6-like cytokines are reportedly neuroprotective and promote optic nerve regeneration, their overall regenerative effects remain rather moderate. Here, we hypothesized that direct activation of the gp130 receptor by the designer cytokine hyper-IL-6 (hIL-6) might induce stronger RGC regeneration than natural cytokines. Indeed, hIL-6 stimulated neurite growth of adult cultured RGCs with significantly higher efficacy than CNTF or IL-6. This neurite growth promoting effect could be attributed to stronger activation of the JAK/STAT3 and PI3K/AKT/mTOR signaling pathways and was also observed in peripheral dorsal root ganglion neurons. Moreover, hIL-6 abrogated axon growth inhibition by central nervous system (CNS) myelin. Remarkably, continuous hIL-6 expression upon RGC-specific AAV transduction after optic nerve crush exerted stronger axon regeneration than other known regeneration promoting treatments such as lens injury and PTEN knockout, with some axons growing through the optic chiasm 6 weeks after optic nerve injury. Combination of hIL-6 with RGC-specific PTEN knockout further enhanced optic nerve regeneration. Therefore, direct activation of gp130 signaling might be a novel, clinically applicable approach for robust CNS repair.


Asunto(s)
Axones/fisiología , Receptor gp130 de Citocinas/metabolismo , Interleucina-6/genética , Vaina de Mielina/metabolismo , Células Ganglionares de la Retina/citología , Animales , Células Cultivadas , Sistema Nervioso Central/metabolismo , Humanos , Interleucina-6/metabolismo , Ratones , Regeneración Nerviosa , Fosfohidrolasa PTEN/metabolismo , Células Ganglionares de la Retina/metabolismo , Transducción de Señal
13.
J Neurosci ; 36(14): 3890-902, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-27053198

RESUMEN

Functional recovery of injured peripheral neurons often remains incomplete, but the clinical outcome can be improved by increasing the axonal growth rate. Adult transgenic GSK3α(S/A)/ß(S/A) knock-in mice with sustained GSK3 activity show markedly accelerated sciatic nerve regeneration. Here, we unraveled the molecular mechanism underlying this phenomenon, which led to a novel pharmacological approach for the promotion of functional recovery after nerve injury.In vitroandin vivoanalysis of GSK3 single knock-in mice revealed the unexpected contribution of GSK3α in addition to GSK3ß, as both GSK3(S/A) knock-ins improved axon regeneration. Moreover, growth stimulation depended on overall GSK3 activity, correlating with increased phosphorylation of microtubule-associated protein 1B and reduced microtubule detyrosination in axonal tips. Pharmacological inhibition of detyrosination by parthenolide or cnicin mimicked this axon growth promotion in wild-type animals, although it had no effect in GSK3α(S/A)/ß(S/A) mice. These results support the conclusion that sustained GSK3 activity primarily targets microtubules in growing axons, maintaining them in a more dynamic state to facilitate growth. Accordingly, further manipulation of microtubule stability using either paclitaxel or nocodazole compromised the effects of parthenolide. Strikingly, either local or systemic application of parthenolide in wild-type mice dose-dependently acceleratedin vivoaxon regeneration and functional recovery similar to GSK3α(S/A)/ß(S/A) mice. Thus, reducing microtubule detyrosination in axonal tips may be a novel, clinically suitable strategy to treat nerve damage. SIGNIFICANCE STATEMENT: Peripheral nerve regeneration often remains incomplete, due to an insufficient growth rate of injured axons. Transgenic mice with sustained GSK3 activity showed markedly accelerated nerve regeneration upon injury. Here, we identified the molecular mechanism underlying this phenomenon and provide a novel therapeutic principle for promoting nerve repair. Analysis of transgenic mice revealed a dependence on overall GSK3 activity and reduction of microtubule detyrosination in axonal tips. Pharmacological inhibition of detyrosination by parthenolide fully mimicked this axon growth promotion in wild-type mice. Strikingly, local or systemic treatment with parthenolidein vivomarkedly accelerated axon regeneration and functional recovery. Thus, pharmacological inhibition of microtubule detyrosination may be a novel, clinically suitable strategy for nerve repair with potential relevance for human patients.


Asunto(s)
Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Tirosina/metabolismo , Animales , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos Fitogénicos/farmacología , Axones/metabolismo , Relación Dosis-Respuesta a Droga , Técnicas de Sustitución del Gen , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Ratones , Ratones Endogámicos C57BL , Nocodazol/farmacología , Paclitaxel/farmacología , Nervios Periféricos/efectos de los fármacos , Nervios Periféricos/crecimiento & desarrollo , Fosforilación , Nervio Ciático/patología , Sesquiterpenos/farmacología
14.
Nat Commun ; 5: 4561, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25078444

RESUMEN

Promotion of axonal growth of injured DRG neurons improves the functional recovery associated with peripheral nerve regeneration. Both isoforms of glycogen synthase kinase 3 (GSK3; α and ß) are phosphorylated and inactivated via phosphatidylinositide 3-kinase (PI3K)/AKT signalling upon sciatic nerve crush (SNC). However, the role of GSK3 phosphorylation in this context is highly controversial. Here we use knock-in mice expressing GSK3 isoforms resistant to inhibitory PI3K/AKT phosphorylation, and unexpectedly find markedly accelerated axon growth of DRG neurons in culture and in vivo after SNC compared with controls. Moreover, this enhanced regeneration strikingly accelerates functional recovery after SNC. These effects are GSK3 activity dependent and associated with elevated MAP1B phosphorylation. Altogether, our data suggest that PI3K/AKT-mediated inhibitory phosphorylation of GSK3 limits the regenerative outcome after peripheral nerve injury. Therefore, suppression of this internal 'regenerative break' may potentially provide a new perspective for the clinical treatment of nerve injuries.


Asunto(s)
Glucógeno Sintasa Quinasa 3/genética , Regeneración Nerviosa/genética , Fosfatidilinositol 3-Quinasa/genética , Proteínas Proto-Oncogénicas c-akt/genética , Nervio Ciático/lesiones , Animales , Femenino , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Masculino , Ratones , Ratones Transgénicos , Compresión Nerviosa , Neuronas/metabolismo , Neuronas/patología , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Cultivo Primario de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Recuperación de la Función , Nervio Ciático/metabolismo , Transducción de Señal
15.
Neurobiol Dis ; 55: 76-86, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23578489

RESUMEN

Mature retinal ganglion cells (RGCs) do not normally regenerate injured axons, but undergo apoptosis soon after axotomy. Besides the insufficient intrinsic capability of mature neurons to regrow axons inhibitory molecules located in myelin of the central nervous system as well as the glial scar forming at the site of injury strongly limit axon regeneration. Nevertheless, RGCs can be transformed into a regenerative state upon inflammatory stimulation (IS), enabling these neurons to grow axons into the injured optic nerve. The outcome of IS stimulated regeneration is, however, still limited by the inhibitory extracellular environment. Here, we report that the chemokine CXCL12/SDF-1 moderately stimulates neurite growth of mature RGCs on laminin in culture and, in contrast to CNTF, exerts potent disinhibitory effects towards myelin. Consistently, co-treatment of RGCs with CXCL12 facilitated CNTF stimulated neurite growth of RGCs on myelin. Mature RGCs express CXCR4, the cognate CXCL12 receptor. Furthermore, the neurite growth promoting and disinhibitory effects of CXCL12 were abrogated by a specific CXCR4 antagonist and by inhibition of the PI3K/AKT/mTOR-, but not the JAK/STAT3-pathway. In vivo, intravitreal application of CXCL12 sustained mTOR activity in RGCs upon optic nerve injury and moderately stimulated axon regeneration in the optic nerve without affecting the survival of RGCs. Importantly, intravitreal application of CXCL12 also significantly increased IS triggered axon regeneration in vivo. These data suggest that the disinhibitory effect of CXCL12 towards myelin may be a useful feature to facilitate optic nerve regeneration, particularly in combination with other axon growth stimulatory treatments.


Asunto(s)
Quimiocina CXCL12/farmacología , Regeneración Nerviosa/efectos de los fármacos , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Células Cultivadas , Quimiocina CXCL12/uso terapéutico , Factor Neurotrófico Ciliar/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Proteína GAP-43/metabolismo , Compresión Nerviosa/efectos adversos , Neuritas/efectos de los fármacos , Neuritas/enzimología , Enfermedades del Nervio Óptico/tratamiento farmacológico , Enfermedades del Nervio Óptico/fisiopatología , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/citología , Transducción de Señal/efectos de los fármacos , Tubulina (Proteína)/metabolismo
16.
Neurosci Lett ; 450(1): 70-3, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19015001

RESUMEN

Spinal cord stimulation (SCS) is an established treatment for intractable neuropathic pain, especially CRPS-1. The mechanisms of action of SCS have only been partly elucidated and include suppression of the hyper-excitability of the Wide Dynamic Range neurons and a GABA increase in the dorsal horn. In the present study we demonstrate an increase of c-Fos immunoreactive cells in the dorsal horn after SCS, suggesting early cellular activation that may preclude earlier described electrophysiological and biochemical changes in the dorsal horn after SCS. In a rat model of neuropathic pain, allodynia was induced and quantified using the von Frey test. In 11 rats a SCS device was implanted and spinal cord stimulation performed. Withdrawal threshold were measured every 15 min up to 90 min. A sham group (n=6) also had a SCS device implanted, but did not receive SCS. After SCS the animals were perfused and histology was performed for quantification of c-Fos immunoreactivity in the dorsal horns. We found a significant increase in c-Fos in the SCS group compared to our sham group and control tissue, indicating late cellular activity in the dorsal horn after SCS.


Asunto(s)
Neuralgia/terapia , Células del Asta Posterior/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Nervio Ciático/lesiones , Animales , Terapia por Estimulación Eléctrica , Electrodos Implantados , Expresión Génica , Masculino , Neuralgia/fisiopatología , Estimulación Física , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...