Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746305

RESUMEN

Zika virus (ZIKV) infections cause microcephaly in new-borns and Guillain-Barre syndrome in adults raising a significant global public health concern, yet no vaccines or antiviral drugs have been developed to prevent or treat ZIKV infections. The viral protease NS3 and its co-factor NS2B are essential for the cleavage of the Zika polyprotein precursor into individual structural and non-structural proteins and is therefore an attractive drug target. Generation of a robust crystal system of co-expressed NS2B-NS3 protease has enabled us to perform a crystallographic fragment screening campaign with 1076 fragments. 48 binders with diverse chemical scaffolds were identified in the active site of the protease, with another 6 fragment hits observed in a potential allosteric binding site. Our work provides potential starting points for the development of potent NS2B-NS3 protease inhibitors. Furthermore, we have structurally characterized a potential allosteric binding pocket, identifying opportunities for allosteric inhibitor development.

2.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746446

RESUMEN

Enteroviruses are the causative agents of paediatric hand-foot-and-mouth disease, and a target for pandemic preparedness due to the risk of higher order complications in a large-scale outbreak. The 2A protease of these viruses is responsible for the self-cleavage of the poly protein, allowing for correct folding and assembly of capsid proteins in the final stages of viral replication. These 2A proteases are highly conserved between Enterovirus species, such as Enterovirus A71 and Coxsackievirus A16 . Inhibition of the 2A protease deranges capsid folding and assembly, preventing formation of mature virions in host cells and making the protease a valuable target for antiviral activity. Herein, we describe a crystallographic fragment screening campaign that identified 75 fragments which bind to the 2A protease including 38 unique compounds shown to bind within the active site. These fragments reveal a path for the development of non-peptidomimetic inhibitors of the 2A protease with broad-spectrum anti-enteroviral activity.

3.
Nucleic Acids Res ; 51(10): 5255-5270, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37115000

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). The NSP15 endoribonuclease enzyme, known as NendoU, is highly conserved and plays a critical role in the ability of the virus to evade the immune system. NendoU is a promising target for the development of new antiviral drugs. However, the complexity of the enzyme's structure and kinetics, along with the broad range of recognition sequences and lack of structural complexes, hampers the development of inhibitors. Here, we performed enzymatic characterization of NendoU in its monomeric and hexameric form, showing that hexamers are allosteric enzymes with a positive cooperative index, and with no influence of manganese on enzymatic activity. Through combining cryo-electron microscopy at different pHs, X-ray crystallography and biochemical and structural analysis, we showed that NendoU can shift between open and closed forms, which probably correspond to active and inactive states, respectively. We also explored the possibility of NendoU assembling into larger supramolecular structures and proposed a mechanism for allosteric regulation. In addition, we conducted a large fragment screening campaign against NendoU and identified several new allosteric sites that could be targeted for the development of new inhibitors. Overall, our findings provide insights into the complex structure and function of NendoU and offer new opportunities for the development of inhibitors.


Asunto(s)
SARS-CoV-2 , Humanos , Regulación Alostérica , Secuencia de Aminoácidos , COVID-19 , Microscopía por Crioelectrón , Endorribonucleasas/metabolismo , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/química
4.
Nat Commun ; 14(1): 1545, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941262

RESUMEN

The main protease from SARS-CoV-2 (Mpro) is responsible for cleavage of the viral polyprotein. Mpro self-processing is called maturation, and it is crucial for enzyme dimerization and activity. Here we use C145S Mpro to study the structure and dynamics of N-terminal cleavage in solution. Native mass spectroscopy analysis shows that mixed oligomeric states are composed of cleaved and uncleaved particles, indicating that N-terminal processing is not critical for dimerization. A 3.5 Å cryo-EM structure provides details of Mpro N-terminal cleavage outside the constrains of crystal environment. We show that different classes of inhibitors shift the balance between oligomeric states. While non-covalent inhibitor MAT-POS-e194df51-1 prevents dimerization, the covalent inhibitor nirmatrelvir induces the conversion of monomers into dimers, even with intact N-termini. Our data indicates that the Mpro dimerization is triggered by induced fit due to covalent linkage during substrate processing rather than the N-terminal processing.


Asunto(s)
Proteasas 3C de Coronavirus , SARS-CoV-2 , Antivirales , Inhibidores de Proteasas/farmacología , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/química
5.
J Biol Chem ; 299(3): 103004, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36775130

RESUMEN

SARS-CoV-2 is the causative agent of COVID-19. The main viral protease (Mpro) is an attractive target for antivirals. The clinically approved drug nirmatrelvir and the clinical candidate ensitrelvir have so far showed great potential for treatment of viral infection. However, the broad use of antivirals is often associated with resistance generation. Herein, we enzymatically characterized 14 naturally occurring Mpro polymorphisms that are close to the binding site of these antivirals. Nirmatrelvir retained its potency against most polymorphisms tested, while mutants G143S and Q189K were associated with diminished inhibition constants. For ensitrelvir, diminished inhibition constants were observed for polymorphisms M49I, G143S, and R188S, but not for Q189K, suggesting a distinct resistance profile between inhibitors. In addition, the crystal structures of selected polymorphisms revealed interactions that were critical for loss of potency. In conclusion, our data will assist the monitoring of potential resistant strains, support the design of combined therapy, as well as assist the development of the next generation of Mpro inhibitors.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Antivirales/farmacología , Lactamas , Leucina , Nitrilos , Inhibidores de Proteasas/farmacología
6.
Viruses ; 15(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36680231

RESUMEN

Since late 2016, a yellow fever virus (YFV) variant carrying a set of nine amino acid variations has circulated in South America. Three of them were mapped on the methyltransferase (MTase) domain of viral NS5 protein. To assess whether these changes affected viral infectivity, we synthesized YFV carrying the MTase of circulating lineage as well as its isoform with the residues of the previous strains (NS5 K101R, NS5 V138I, and NS5 G173S). We observed a slight difference in viral growth properties and plaque phenotype between the two synthetic YFVs. However, the MTase polymorphisms associated with the Brazilian strain of YFV (2016-2019) confer more susceptibility to the IFN-I. In addition, in vitro MTase assay revealed that the interaction between the YFV MTase and the methyl donor molecule (SAM) is altered in the Brazilian MTase variant. Altogether, the results reported here describe that the MTase carrying the molecular signature of the Brazilian YFV circulating since 2016 might display a slight decrease in its catalytic activity but virtually no effect on viral fitness in the parameters comprised in this study. The most marked influence of these residues stands in the immune escape against the antiviral response mediated by IFN-I.


Asunto(s)
Interferón Tipo I , Virus de la Fiebre Amarilla , Virus de la Fiebre Amarilla/fisiología , Interferón Tipo I/genética , Aminoácidos , Evasión Inmune , Brasil , Metiltransferasas/metabolismo , Proteínas no Estructurales Virales/genética
7.
Virus Res ; 324: 199029, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36565816

RESUMEN

The Chikungunya virus (CHIKV) causes Chikungunya fever, a disease characterized by symptoms such as arthralgia/polyarthralgia. Currently, there are no antivirals approved against CHIKV, emphasizing the need to develop novel therapies. The imidazonaphthyridine compound (RO8191), an interferon-α (IFN-α) agonist, was reported as a potent inhibitor of HCV. Here RO8191 was investigated for its potential to inhibit CHIKV replication in vitro. RO8191 inhibited CHIKV infection in BHK-21 and Vero-E6 cells with a selectivity index (SI) of 12.3 and 37.3, respectively. Additionally, RO8191 was capable to protect cells against CHIKV infection, inhibit entry by virucidal activity, and strongly impair post-entry steps of viral replication. An effect of RO8191 on CHIKV replication was demonstrated in BHK-21 through type-1 IFN production mechanism and in Vero-E6 cells which has a defective type-1 IFN production, also suggesting a type-1 IFN independent mode of action. Molecular docking calculations demonstrated interactions of RO8191 with the CHIKV E proteins, corroborated by the ATR-FTIR assay, and with non-structural proteins, supported by the CHIKV-subgenomic replicon cells assay.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Interferón Tipo I , Animales , Chlorocebus aethiops , Humanos , Fiebre Chikungunya/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , Simulación del Acoplamiento Molecular , Replicación Viral , Células Vero , Interferón Tipo I/farmacología
8.
Virus Res ; 299: 198388, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33887282

RESUMEN

The 2015/16 Zika virus (ZIKV) epidemic led to almost 1 million confirmed cases in 84 countries and was associated to the development of congenital microcephaly and Guillain-Barré syndrome. More recently, a ZIKV African lineage was identified in Brazil raising concerns about a future outbreak. The long-term consequences of viral infection emphasizes the need for the development of effective anti-ZIKV drugs. In this study, we developed and characterized a ZIKV replicon cell line for the screening of viral replication inhibitors. The replicon system was developed by engineering the IRES-Neo cassette into the 3' UTR terminus of the ZIKV Rluc DNA construct. After in vitro transcription, replicon RNA was used to transfect BHK-21 cells, that were selected with G418, thus generating the BHK-21-RepZIKV_IRES-Neo cell line. Through this replicon-based cell system, we identified two molecules with potent anti-ZIKV activities, an imidazonaphthyridine and a riminophenazine, both from the MMV/DNDi Pandemic Response Box library of 400 drug-like compounds. The imidazonaphthyridine, known as RO8191, showed remarkable selectivity against ZIKV, while the riminophenazine, the antibiotic Clofazimine, could act as a non-nucleoside analog inhibitor of viral RNA-dependent RNA polymerase (RdRp), as evidenced both in vitro and in silico. The data showed herein supports the use of replicon-based assays in high-throughput screening format as a biosafe and reliable tool for antiviral drug discovery.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Antivirales/farmacología , Antivirales/uso terapéutico , Clofazimina/farmacología , Clofazimina/uso terapéutico , Ensayos Analíticos de Alto Rendimiento , Humanos , Replicón , Replicación Viral , Virus Zika/fisiología
9.
Biochim Biophys Acta Gen Subj ; 1864(10): 129681, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32653619

RESUMEN

Background Fungal aryl-alcohol oxidases (AAOx) are extracellular flavoenzymes that belong to glucose-methanol-choline oxidoreductase family and are responsible for the selective conversion of primary aromatic alcohols into aldehydes and aromatic aldehydes to their corresponding acids, with concomitant production of hydrogen peroxide (H2O2) as by-product. The H2O2 can be provided to lignin degradation pathway, a biotechnological property explored in biofuel production. In the thermophilic fungus Thermothelomyces thermophilus (formerly Myceliophthora thermophila), just one AAOx was identified in the exo-proteome. Methods The glycosylated and non-refolded crystal structure of an AAOx from T. thermophilus at 2.6 Å resolution was elucidated by X-ray crystallography combined with small-angle X-ray scattering (SAXS) studies. Moreover, biochemical analyses were carried out to shed light on enzyme substrate specificity and thermostability. Results This flavoenzyme harbors a flavin adenine dinucleotide as a cofactor and is able to oxidize aromatic substrates and 5-HMF. Our results also show that the enzyme has similar oxidation rates for bulky or simple aromatic substrates such as cinnamyl and veratryl alcohols. Moreover, the crystal structure of MtAAOx reveals an open active site, which might explain observed specificity of the enzyme. Conclusions MtAAOx shows previously undescribed structural differences such as a fully accessible catalytic tunnel, heavy glycosylation and Ca2+ binding site providing evidences for thermostability and activity of the enzymes from AA3_2 subfamily. General significance Structural and biochemical analyses of MtAAOx could be important for comprehension of aryl-alcohol oxidases structure-function relationships and provide additional molecular tools to be used in future biotechnological applications.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Ascomicetos/enzimología , Oxidorreductasas de Alcohol/química , Ascomicetos/química , Ascomicetos/metabolismo , Sitios de Unión , Calcio/metabolismo , Cristalografía por Rayos X , Estabilidad de Enzimas , Peróxido de Hidrógeno/metabolismo , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato , Temperatura
10.
Biochim Biophys Acta Gen Subj ; 1864(4): 129521, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31931019

RESUMEN

BACKGROUND: The Yellow Fever virus (YFV) is transmitted by mosquitos and causes an infection with symptoms including fever, headaches and nausea. In 20-50% of the cases, the disease may evolve to a visceral stage, reaching high mortality rates. YFV NS2B-NS3 protease has been identified as an important drug target. METHODS: Herein, we describe the crystal structure of the NS2B-NS3 protease from the 2017 YFV Brazilian circulating strain using X-ray crystallography. Furthermore, we used a combination of biochemical and biophysical assays to characterize the enzyme and investigate the impact of the polymorphisms observed in different YFV circulating strains. RESULTS: Surprisingly, the crystal structure of YFV protease seems to adopt the closed conformation without the presence of a binding partner. Although D88E and K121R mutants exhibited a lower affinity for the substrate, both revealed to be more processive, resulting in a similar catalytic efficiency in relation to the WT protease. Still, both mutants showed an accentuated decrease in stability when compared with the WT. CONCLUSIONS: The crystal structure of YFV NS2B-NS3 in closed conformation might be an important tool for the development of new drugs, as well as understanding the activation mechanism of viral proteases. Biochemical analyses indicate that the NS2B-NS3 protease of the circulating strain of YFV is more stable than previous strains. GENERAL SIGNIFICANCE: The YFV NS2B-NS3 protease is the first flaviviral structure described in its closed conformation when in a free form, implying that external factors might induce the activation of the enzyme.


Asunto(s)
Polimorfismo de Nucleótido Simple/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Virus de la Fiebre Amarilla/enzimología , Brasil , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/metabolismo
11.
Curr Opin Struct Biol ; 59: 65-72, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30954758

RESUMEN

With almost half of the world population living at risk, tropical infectious diseases cause millions of deaths every year in developing countries. Considering the lack of economic prospects for investment in this field, approaches aiming the rational design of compounds, such as structure-based drug discovery (SBDD), fragment screening, target-based drug discovery, and drug repurposing are of special interest. Herein, we focused in the advances on the field of SBDD targeting arboviruses such as dengue, yellow fever, zika and chikungunya enzymes of the RNA replication complex (RC) and enzymes involved in a variety of pathways essential to ensure parasitic survival in the host, for malaria, Chagas e leishmaniasis diseases. We also highlighted successful examples such as promising new inhibitors and molecules already in preclinical/clinical phase tests, major gaps in the field and perspectives for the future of drug design for tropical diseases.


Asunto(s)
Antiparasitarios/química , Antivirales/química , Inhibidores Enzimáticos/química , Enzimas/química , Proteínas Protozoarias/química , Relación Estructura-Actividad Cuantitativa , Proteínas Virales/química , Antiparasitarios/farmacología , Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/farmacología , Humanos , Modelos Moleculares , Conformación Molecular , Unión Proteica , Proteínas Protozoarias/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Proteínas Virales/metabolismo
12.
FEBS J ; 283(22): 4097-4112, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27685756

RESUMEN

In a search for better comprehension of ß-galactosidase function and specificity, we solved the crystal structures of the GH42 ß-galactosidase BbgII from Bifidobacterium bifidum S17, a well-adapted probiotic microorganism from the human digestive tract, and its complex with d-α-galactose. BbgII is a three-domain molecule that forms barrel-shaped trimers in solution. BbgII interactions with d-α-galactose, a competitive inhibitor, showed a number of residues that are involved in the coordination of ligands. A combination of site-directed mutagenesis of these amino acid residues with enzymatic activity measurements confirmed that Glu161 and Glu320 are fundamental for catalysis and their substitution by alanines led to catalytically inactive mutants. Mutation Asn160Ala resulted in a two orders of magnitude decrease of the enzyme kcat without significant modification in its Km , whereas mutations Tyr289Phe and His371Phe simultaneously decreased kcat and increased Km values. Enzymatic activity of Glu368Ala mutant was too low to be detected. Our docking and molecular dynamics simulations showed that the enzyme recognizes and tightly binds substrates with ß1→6 and ß1→3 bonds, while binding of the substrates with ß1→4 linkages is less favorable. DATABASE: Structural data are available in the PDB under the accession numbers 4UZS and 4UCF.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bifidobacterium bifidum/enzimología , Galactosa/metabolismo , Galactosidasas/metabolismo , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bifidobacterium bifidum/genética , Sitios de Unión/genética , Biocatálisis/efectos de los fármacos , Dominio Catalítico , Cristalografía por Rayos X , Galactosa/química , Galactosa/farmacología , Galactosidasas/química , Galactosidasas/genética , Cinética , Conformación Molecular , Simulación de Dinámica Molecular , Mutación Missense , Dominios Proteicos , Multimerización de Proteína , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA