Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Toxicol ; 6: 1394361, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933090

RESUMEN

The rodent cancer bioassays are conducted for agrochemical safety assessment yet they often do not inform regulatory decision-making. As part of a collaborative effort, the Rethinking Carcinogenicity Assessment for Agrochemicals Project (ReCAAP) developed a reporting framework to guide a weight of evidence (WOE)-based carcinogenicity assessment that demonstrates how to fulfill the regulatory requirements for chronic risk estimation without the need to conduct lifetime rodent bioassays. The framework is the result of a multi-stakeholder collaboration that worked through an iterative process of writing case studies (in the form of waivers), technical peer reviews of waivers, and an incorporation of key learnings back into the framework to be tested in subsequent case study development. The example waivers used to develop the framework were written retrospectively for registered agrochemical active substances for which the necessary data and information could be obtained through risk assessment documents or data evaluation records from the US EPA. This exercise was critical to the development of a framework, but it lacked authenticity in that the stakeholders reviewing the waiver already knew the outcome of the rodent cancer bioassay(s). Syngenta expanded the evaluation of the ReCAAP reporting framework by writing waivers for three prospective case studies for new active substances where the data packages had not yet been submitted for registration. The prospective waivers followed the established framework considering ADME, potential exposure, subchronic toxicity, genotoxicity, immunosuppression, hormone perturbation, mode of action (MOA), and all relevant information available for read-across using a WOE assessment. The point of departure was estimated from the available data, excluding the cancer bioassay results, with a proposed use for the chronic dietary risk assessment. The read-across assessments compared data from reliable registered chemical analogues to strengthen the prediction of chronic toxicity and/or tumorigenic potential. The prospective case studies represent a range of scenarios, from a new molecule in a well-established chemical class with a known MOA to a molecule with a new pesticidal MOA (pMOA) and limited read-across to related molecules. This effort represents an important step in establishing criteria for a WOE-based carcinogenicity assessment without the rodent cancer bioassay(s) while ensuring a health protective chronic dietary risk assessment.

2.
Regul Toxicol Pharmacol ; 131: 105160, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35311659

RESUMEN

Rodent cancer bioassays have been long-required studies for regulatory assessment of human cancer hazard and risk. These studies use hundreds of animals, are resource intensive, and certain aspects of these studies have limited human relevance. The past 10 years have seen an exponential growth of new technologies with the potential to effectively evaluate human cancer hazard and risk while reducing, refining, or replacing animal use. To streamline and facilitate uptake of new technologies, a workgroup comprised of scientists from government, academia, non-governmental organizations, and industry stakeholders developed a framework for waiver rationales of rodent cancer bioassays for consideration in agrochemical safety assessment. The workgroup used an iterative approach, incorporating regulatory agency feedback, and identifying critical information to be considered in a risk assessment-based weight of evidence determination of the need for rodent cancer bioassays. The reporting framework described herein was developed to support a chronic toxicity and carcinogenicity study waiver rationale, which includes information on use pattern(s), exposure scenario(s), pesticidal mode-of-action, physicochemical properties, metabolism, toxicokinetics, toxicological data including mechanistic data, and chemical read-across from similar registered pesticides. The framework could also be applied to endpoints other than chronic toxicity and carcinogenicity, and for chemicals other than agrochemicals.


Asunto(s)
Neoplasias , Plaguicidas , Agroquímicos/toxicidad , Animales , Bioensayo , Pruebas de Carcinogenicidad , Plaguicidas/toxicidad , Medición de Riesgo , Roedores
3.
Regul Toxicol Pharmacol ; 91 Suppl 1: S3-S13, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28958911

RESUMEN

Prevailing knowledge gaps in linking specific molecular changes to apical outcomes and methodological uncertainties in the generation, storage, processing, and interpretation of 'omics data limit the application of 'omics technologies in regulatory toxicology. Against this background, the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) convened a workshop Applying 'omics technologies in chemicals risk assessment that is reported herein. Ahead of the workshop, multi-expert teams drafted frameworks on best practices for (i) a Good-Laboratory Practice-like context for collecting, storing and curating 'omics data; (ii) the processing of 'omics data; and (iii) weight-of-evidence approaches for integrating 'omics data. The workshop participants confirmed the relevance of these Frameworks to facilitate the regulatory applicability and use of 'omics data, and the workshop discussions provided input for their further elaboration. Additionally, the key objective (iv) to establish approaches to connect 'omics perturbations to phenotypic alterations was addressed. Generally, it was considered promising to strive to link gene expression changes and pathway perturbations to the phenotype by mapping them to specific adverse outcome pathways. While further work is necessary before gene expression changes can be used to establish safe levels of substance exposure, the ECETOC workshop provided important incentives towards achieving this goal.


Asunto(s)
Congresos como Asunto , Ecotoxicología/métodos , Educación/métodos , Genómica/métodos , Metabolómica/métodos , Informe de Investigación , Animales , Congresos como Asunto/tendencias , Ecotoxicología/tendencias , Educación/tendencias , Europa (Continente) , Genómica/tendencias , Humanos , Metabolómica/tendencias , Proteómica/métodos , Proteómica/tendencias , Informe de Investigación/tendencias , Medición de Riesgo , España
4.
Regul Toxicol Pharmacol ; 80: 295-309, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27396307

RESUMEN

Respiratory tract sensitization can have significant acute and chronic health implications. While induction of respiratory sensitization is widely recognized for some chemicals, validated standard methods or frameworks for identifying and characterizing the hazard are not available. A workshop on assessment of respiratory sensitization was held to discuss the current state of science for identification and characterization of respiratory sensitizer hazard, identify information facilitating development of validated standard methods and frameworks, and consider the regulatory and practical risk management needs. Participants agreed on a predominant Th2 immunological mechanism and several steps in respiratory sensitization. Some overlapping cellular events in respiratory and skin sensitization are well understood, but full mechanism(s) remain unavailable. Progress on non-animal approaches to skin sensitization testing, ranging from in vitro systems, -omics, in silico profiling, and structural profiling were acknowledged. Addressing both induction and elicitation phases remains challenging. Participants identified lack of a unifying dose metric as increasing the difficulty of interpreting dosimetry across exposures. A number of research needs were identified, including an agreed list of respiratory sensitizers and other asthmagens, distinguishing between adverse effects from immune-mediated versus non-immunological mechanisms. A number of themes emerged from the discussion regarding future testing strategies, particularly the need for a tiered framework respiratory sensitizer assessment. These workshop present a basis for moving towards a weight-of-evidence assessment.


Asunto(s)
Exposición por Inhalación/efectos adversos , Hipersensibilidad Respiratoria/inducido químicamente , Sistema Respiratorio/efectos de los fármacos , Pruebas de Toxicidad/métodos , Alternativas a las Pruebas en Animales , Animales , Asma Ocupacional/inducido químicamente , Asma Ocupacional/genética , Asma Ocupacional/inmunología , Asma Ocupacional/fisiopatología , Dermatitis Alérgica por Contacto/etiología , Humanos , Hipersensibilidad Respiratoria/genética , Hipersensibilidad Respiratoria/inmunología , Hipersensibilidad Respiratoria/fisiopatología , Sistema Respiratorio/inmunología , Sistema Respiratorio/fisiopatología , Medición de Riesgo , Células Th2/efectos de los fármacos , Células Th2/inmunología , Toxicogenética
5.
Crit Rev Toxicol ; 46(9): 785-833, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27347635

RESUMEN

The US Environmental Protection Agency Endocrine Disruptor Screening Program (EDSP) is a tiered screening approach to determine the potential for a chemical to interact with estrogen, androgen, or thyroid hormone systems and/or perturb steroidogenesis. Use of high-throughput screening (HTS) to predict hazard and exposure is shifting the EDSP approach to (1) prioritization of chemicals for further screening; and (2) targeted use of EDSP Tier 1 assays to inform specific data needs. In this work, toxicology data for three triazole fungicides (triadimefon, propiconazole, and myclobutanil) were evaluated, including HTS results, EDSP Tier 1 screening (and other scientifically relevant information), and EPA guideline mammalian toxicology study data. The endocrine-related bioactivity predictions from HTS and information that satisfied the EDSP Tier 1 requirements were qualitatively concordant. Current limitations in the available HTS battery for thyroid and steroidogenesis pathways were mitigated by inclusion of guideline toxicology studies in this analysis. Similar margins (3-5 orders of magnitude) were observed between HTS-predicted human bioactivity and exposure values and between in vivo mammalian bioactivity and EPA chronic human exposure estimates for these products' registered uses. Combined HTS hazard and human exposure predictions suggest low priority for higher-tiered endocrine testing of these triazoles. Comparison with the mammalian toxicology database indicated that this HTS-based prioritization would have been protective for any potential in vivo effects that form the basis of current risk assessment for these chemicals. This example demonstrates an effective, human health protective roadmap for EDSP evaluation of pesticide active ingredients via prioritization using HTS and guideline toxicology information.


Asunto(s)
Disruptores Endocrinos/toxicidad , Fungicidas Industriales/toxicidad , Pruebas de Toxicidad/métodos , Triazoles/toxicidad , Bioensayo , Disruptores Endocrinos/clasificación , Disruptores Endocrinos/normas , Fungicidas Industriales/clasificación , Fungicidas Industriales/normas , Nitrilos/toxicidad , Triazoles/clasificación , Triazoles/normas , Estados Unidos
6.
Toxicology ; 321: 80-8, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24675475

RESUMEN

Toxicogenomics (TGx) is employed frequently to investigate underlying molecular mechanisms of the compound of interest and, thus, has become an aid to mode of action determination. However, the results and interpretation of a TGx dataset are influenced by the experimental design and methods of analysis employed. This article describes an evaluation and reanalysis, by two independent laboratories, of previously published TGx mouse liver microarray data for a triazole fungicide, propiconazole (PPZ), and the anticonvulsant drug phenobarbital (PB). Propiconazole produced an increase incidence of liver tumors in male CD-1 mice only at a dose that exceeded the maximum tolerated dose (2500 ppm). Firstly, we illustrate how experimental design differences between two in vivo studies with PPZ and PB may impact the comparisons of TGx results. Secondly, we demonstrate that different researchers using different pathway analysis tools can come to different conclusions on specific mechanistic pathways, even when using the same datasets. Finally, despite these differences the results across three different analyses also show a striking degree of similarity observed for PPZ and PB treated livers when the expression data are viewed as major signaling pathways and cell processes affected. Additional studies described here show that the postulated key event of hepatocellular proliferation was observed in CD-1 mice for both PPZ and PB, and that PPZ is also a potent activator of the mouse CAR nuclear receptor. Thus, with regard to the events which are hallmarks of CAR-induced effects that are key events in the mode of action (MOA) of mouse liver carcinogenesis with PB, PPZ-induced tumors can be viewed as being promoted by a similar PB-like CAR-dependent MOA.


Asunto(s)
Carcinógenos , Fungicidas Industriales/toxicidad , Hipnóticos y Sedantes/toxicidad , Fenobarbital/toxicidad , Receptores Citoplasmáticos y Nucleares/metabolismo , Triazoles/toxicidad , Animales , Pruebas de Carcinogenicidad , Proliferación Celular/efectos de los fármacos , Receptor de Androstano Constitutivo , Femenino , Genes Reporteros/efectos de los fármacos , Genes Reporteros/genética , Hepatocitos/efectos de los fármacos , Masculino , Ratones , Neoplasias Experimentales/inducido químicamente , Tamaño de los Órganos/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Toxicogenética , Aumento de Peso/efectos de los fármacos
7.
Crit Rev Toxicol ; 44(1): 64-82, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24180433

RESUMEN

The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are important nuclear receptors involved in the regulation of cellular responses from exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non-genotoxic indirect CAR activator, which induces cytochrome P450 (CYP) and other xenobiotic metabolizing enzymes and is known to produce liver foci/tumors in mice and rats. From literature data, a mode of action (MOA) for PB-induced rodent liver tumor formation was developed. A MOA for PXR activators was not established owing to a lack of suitable data. The key events in the PB-induced liver tumor MOA comprise activation of CAR followed by altered gene expression specific to CAR activation, increased cell proliferation, formation of altered hepatic foci and ultimately the development of liver tumors. Associative events in the MOA include altered epigenetic changes, induction of hepatic CYP2B enzymes, liver hypertrophy and decreased apoptosis; with inhibition of gap junctional intercellular communication being an associative event or modulating factor. The MOA was evaluated using the modified Bradford Hill criteria for causality and other possible MOAs were excluded. While PB produces liver tumors in rodents, important species differences were identified including a lack of cell proliferation in cultured human hepatocytes. The MOA for PB-induced rodent liver tumor formation was considered to be qualitatively not plausible for humans. This conclusion is supported by data from a number of epidemiological studies conducted in human populations chronically exposed to PB in which there is no clear evidence for increased liver tumor risk.


Asunto(s)
Neoplasias Hepáticas/patología , Hígado/efectos de los fármacos , Fenobarbital/toxicidad , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Hidrocarburo de Aril Hidroxilasas , Proliferación Celular/efectos de los fármacos , Receptor de Androstano Constitutivo , Citocromo P-450 CYP2B6 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/inducido químicamente , Receptor X de Pregnano , Receptores de Esteroides/metabolismo , Xenobióticos/toxicidad
8.
Regul Toxicol Pharmacol ; 61(2): 141-53, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21840362

RESUMEN

Toxicogenomics is the application of toxicology, genetics, molecular biology and environmental health to describe the response of organisms to environmental stimuli. The field of toxicogenomics has developed over the past 15 years mainly due to advances in toxicology, molecular genetics and cell biology. Its prospective use to resolve crucial data gaps and data inconsistencies could improve risk assessment by providing additional data to increase the understanding of mechanisms and modes of action (MOA) and enhance the reliability of dose-response extrapolation. Thus, toxicogenomics holds promise for advancing the scientific basis of risk assessments. However, one of the current issues is how genomic/transcriptional data is being used to further describe a MOA for oncogenicity and, in turn, its potential uses in cancer risk assessment. This commentary identifies how toxicogenomics could be used on a case by case basis to add information to a MOA addressing both the opportunities and challenges this technology holds. In addition, some pitfalls to avoid in the generation and interpretation of toxicogenomic data and validation issues that need to be addressed before toxicogenomics can be used in the risk assessment process and regulatory decisions are discussed.


Asunto(s)
Genómica/métodos , Toxicogenética/métodos , Toxicología/métodos , Animales , Transformación Celular Neoplásica/genética , Relación Dosis-Respuesta a Droga , Genómica/tendencias , Humanos , Reproducibilidad de los Resultados , Medición de Riesgo/métodos , Medición de Riesgo/tendencias , Toxicogenética/tendencias , Toxicología/tendencias
9.
Syst Biol Reprod Med ; 55(5-6): 214-26, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19938956

RESUMEN

Environmental chemicals that alter steroid production could interfere with male reproductive development and function. Three agricultural antifungal triazoles that are known to modulate expression of cytochrome P450 (CYP) genes and enzymatic activities were tested for effects on steroidogenesis using rat in vivo (triadimefon), rat in vitro (myclobutanil and triadimefon), and human in vitro (myclobutanil, propiconazole, and triadimefon) model systems. Hormone production was measured in testis organ cultures from untreated adult and neonatal rats, following in vitro exposure to 1, 10, or 100 muM of myclobutanil or triadimefon. Myclobutanil and triadimefon reduced media levels of testosterone by 40-68% in the adult and neonatal testis culture, and altered steroid production in a manner that indicated CYP17-hydroxylase/17,20 lyase (CYP17A1) inhibition at the highest concentration tested. Rat to human comparison was explored using the H295R (human adrenal adenocarcinoma) cell line. Following 48 h exposure to myclobutanil, propiconazole, or triadimefon at 1, 3, 10, 30, or 100 muM, there was an overall decrease in estradiol, progesterone, and testosterone by all three triazoles. These data indicate that myclobutanil, propiconazole, and triadimefon are weak inhibitors of testosterone production in vitro. However, in vivo exposure of rats to triazoles resulted in increased serum and intra-testicular testosterone levels. This discordance could be due to higher concentrations of triazoles tested in vitro, and differences within an in vitro model system lacking hepatic metabolism and neuroendocrine control.


Asunto(s)
Antifúngicos/farmacología , Esteroides/biosíntesis , Triazoles/farmacología , Animales , Línea Celular Tumoral , Humanos , Masculino , Nitrilos/farmacología , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Esteroide 17-alfa-Hidroxilasa/metabolismo , Testosterona/biosíntesis
10.
Toxicol Sci ; 110(2): 449-62, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19423681

RESUMEN

The mode of action for the reproductive toxicity of some triazole antifungals has been characterized as an increase in serum testosterone and hepatic response, and reduced insemination and fertility indices. In order to refine our mechanistic understanding of these potential modes of action, gene expression profiling was conducted on liver and testis from male Wistar Han IGS rats exposed to myclobutanil (500, 2000 ppm), propiconazole (500, 2500 ppm), or triadimefon (500, 1800 ppm) from gestation day six to postnatal day 92. Gene expression profiles indicated that all three triazoles significantly perturbed the fatty acid, steroid, and xenobiotic metabolism pathways in the male rat liver. In addition, triadimefon modulated expression of genes in the liver from the sterol biosynthesis pathway. Although expression of individual genes were affected, there were no common pathways modulated by all three triazoles in the testis. The pathways identified in the liver included numerous genes involved in phase I-III metabolism (Aldh1a1, Cyp1a1, Cyp2b2, Cyp3a1, Cyp3a2, Slco1a4, Udpgtr2), fatty acid metabolism (Cyp4a10, Pcx, Ppap2b), and steroid metabolism (Ugt1a1, Ugt2a1) for which expression was altered by the triazoles. These differentially expressed genes form part of a network involving lipid, sterol, and steroid homeostatic pathways regulated by the constitutive androstane (CAR), pregnane X (PXR), peroxisome proliferator-activated alpha, and other nuclear receptors in liver. These relatively high dose and long-term exposures to triazole antifungals appeared to perturb fatty acid and steroid metabolism in the male rat liver predominantly through the CAR and PXR signaling pathways. These toxicogenomic effects describe a plausible series of key events contributing to the disruption in steroid homeostasis and reproductive toxicity of select triazole antifungals.


Asunto(s)
Antifúngicos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas , Perfilación de la Expresión Génica , Infertilidad Masculina/inducido químicamente , Hígado/efectos de los fármacos , Reproducción/efectos de los fármacos , Testículo/efectos de los fármacos , Triazoles/toxicidad , Envejecimiento , Animales , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Edad Gestacional , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Hígado/metabolismo , Hepatopatías/genética , Hepatopatías/metabolismo , Masculino , Nitrilos/toxicidad , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Ratas Wistar , Reproducción/genética , Testículo/metabolismo , Testosterona/genética , Testosterona/metabolismo
11.
Toxicol Appl Pharmacol ; 238(1): 80-9, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19409404

RESUMEN

The triazole antifungals myclobutanil, propiconazole and triadimefon cause varying degrees of hepatic toxicity and disrupt steroid hormone homeostasis in rodent in vivo models. To identify biological pathways consistently modulated across multiple timepoints and various study designs, gene expression profiling was conducted on rat livers from three separate studies with triazole treatment groups ranging from 6 h after a single oral gavage exposure, to prenatal to adult exposures via feed. To explore conservation of responses across species, gene expression from the rat liver studies were compared to in vitro data from rat and human primary hepatocytes exposed to the triazoles. Toxicogenomic data on triazoles from 33 different treatment groups and 135 samples (microarrays) identified thousands of probe sets and dozens of pathways differentially expressed across time, dose, and species--many of these were common to all three triazoles, or conserved between rodents and humans. Common and conserved pathways included androgen and estrogen metabolism, xenobiotic metabolism signaling through CAR and PXR, and CYP mediated metabolism. Differentially expressed genes included the Phase I xenobiotic, fatty acid, sterol and steroid metabolism genes Cyp2b2 and CYP2B6, Cyp3a1 and CYP3A4, and Cyp4a22 and CYP4A11; Phase II conjugation enzyme genes Ugt1a1 and UGT1A1; and Phase III ABC transporter genes Abcb1 and ABCB1. Gene expression changes caused by all three triazoles in liver and hepatocytes were concentrated in biological pathways regulating lipid, sterol and steroid homeostasis, identifying a potential common mode of action conserved between rodents and humans. Modulation of hepatic sterol and steroid metabolism is a plausible mode of action for changes in serum testosterone and adverse reproductive outcomes observed in rat studies, and may be relevant to human risk assessment.


Asunto(s)
Antifúngicos/toxicidad , Hígado/efectos de los fármacos , Nitrilos/toxicidad , Triazoles/toxicidad , Animales , Antifúngicos/administración & dosificación , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Masculino , Nitrilos/administración & dosificación , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Especificidad de la Especie , Factores de Tiempo , Toxicogenética , Triazoles/administración & dosificación
12.
Toxicol Sci ; 95(1): 227-39, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17018648

RESUMEN

Triazole fungicides associated with a range of reported male reproductive effects in experimental animals were selected to assess potential toxic modes of action. Wistar Han rats were fed myclobutanil (M: 100, 500, or 2000 ppm), propiconazole (P: 100, 500, or 2500 ppm), or triadimefon (T: 100, 500, or 1800 ppm) from gestation day 6 to postnatal day (PND) 120. One male per litter was necropsied on PND1, 22, 50, or 92. Measurements included anogenital distance (AGD) at PND0, body and organ weights, serum hormone levels, age at preputial separation (PPS), sperm morphology and motility, and fertility and fecundity. AGD was increased by the high dose of all three triazoles, indicating hypervirilization. Triadimefon delayed PPS, consistent with delayed puberty, at 1800 ppm. Relative liver weights were increased at PND1, 50, and 92 by all three triazoles. Hepatocellular hypertrophy was present at PND50 from propiconazole and triadimefon and at PND92 from all three high-dose triazole treatments. Relative pituitary weights were decreased at PND92 by middle- and high-dose myclobutanil treatment. Absolute testis weights were increased at PND1 by myclobutanil, at PND22 by myclobutanil and triadimefon, and at PND50 by propiconazole and triadimefon treatment. Relative ventral prostate weights were increased at PND92 by myclobutanil and triadimefon treatment. Serum testosterone was increased at PND50 by triadimefon and at PND92/99 by all three triazole treatments. Insemination and fertility were impaired by myclobutanil and triadimefon treatment. In addition to the reproductive system effects, total serum thyroxine levels were decreased at PND92 by high-dose triadimefon. These reproductive effects are consistent with the disruption of testosterone homeostasis as a key event in the mode of action for triazole-induced reproductive toxicity.


Asunto(s)
Antifúngicos/toxicidad , Fungicidas Industriales/toxicidad , Homeostasis/efectos de los fármacos , Reproducción/efectos de los fármacos , Testosterona/sangre , Triazoles/toxicidad , Canal Anal/efectos de los fármacos , Canal Anal/crecimiento & desarrollo , Animales , Peso Corporal/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ingestión de Alimentos/efectos de los fármacos , Femenino , Fertilidad/efectos de los fármacos , Genitales Masculinos/efectos de los fármacos , Genitales Masculinos/crecimiento & desarrollo , Genitales Masculinos/patología , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Nitrilos/toxicidad , Tamaño de los Órganos/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Ratas Wistar , Maduración Sexual/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/patología , Factores de Tiempo
13.
Reprod Toxicol ; 22(4): 647-58, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16914289

RESUMEN

Three triazole fungicides were evaluated for effects on female rat reproductive development. Rats were exposed via feed to propiconazole (P) (100, 500, or 2500 ppm), myclobutanil (M) (100, 500, or 2000 ppm), or triadimefon (T) (100, 500, or 1800 ppm) from gestation day 6 to postnatal day (PND) 98. Body weight (BW) and anogenital distance (AGD) at PND 0, age and BW at vaginal opening (VO), estrous cyclicity, and body and organ weight at necropsy were measured. BW at PND 0 was unaffected by treatment. AGD was increased by M2000. VO was delayed by M2000 and T1800. Estrous cyclicity was initially disrupted by P500, P2500 and T1800, but later normalized. At PND 99 there was a decrease in BW by T1800, an increase in liver weight by P2500 and T1800, and an increase in ovarian weight by M2000 and T1800. It is concluded that exposure to P, M and T adversely impacted female rodent reproductive development.


Asunto(s)
Fungicidas Industriales/toxicidad , Reproducción/efectos de los fármacos , Triazoles/toxicidad , Administración Oral , Animales , Animales Recién Nacidos , Peso Corporal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estradiol/sangre , Estro/efectos de los fármacos , Femenino , Fungicidas Industriales/administración & dosificación , Edad Gestacional , Tamaño de la Camada/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Estructura Molecular , Tamaño de los Órganos/efectos de los fármacos , Ovario/efectos de los fármacos , Ovario/patología , Embarazo , Ratas , Ratas Wistar , Reproducción/fisiología , Razón de Masculinidad , Triazoles/administración & dosificación , Triazoles/química , Vagina/efectos de los fármacos
14.
Toxicol Appl Pharmacol ; 215(3): 274-84, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16730040

RESUMEN

Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and hypotheses on potential mechanisms of action for this class of chemicals. Adult male CD-1 mice were exposed daily for 14 days to fluconazole, myclobutanil, propiconazole, or triadimefon at three dose levels by oral gavage. Doses were based on previous studies that resulted in liver hypertrophy or hepatotoxicity. All four triazoles caused hepatocyte hypertrophy, and all except triadimefon increased relative liver/body weight ratios at the middle and high dose levels. CYP enzyme activities were also induced by all four triazoles at the middle and high doses as measured by the dealkylations of four alkoxyresorufins, although some differences in substrate specificity were observed. Consistent with this common histopathology and biochemistry, several CYP and xenobiotic metabolizing enzyme (XME) genes were differentially expressed in response to all four (Cyp2d26 and Cyp3a11), or three of the four (Cyp2c40, Cyp2c55, Ces2, Slco1a4) triazoles. Differential expression of numerous other CYP and XME genes discriminated between the various triazoles, consistent with differences in CYP enzyme activities, and indicative of possible differences in mechanisms of hepatotoxicity or dose response. Multiple isoforms of Cyp1a, 2b, 2c, 3a, and other CYP and XME genes regulated by the nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) were differentially expressed following triazole exposure. Based on these results, we expanded on our original hypothesis that triazole hepatotoxicity was mediated by CYP induction, to include additional XME genes, many of which are modulated by CAR and PXR.


Asunto(s)
Antifúngicos/toxicidad , Fungicidas Industriales/toxicidad , Hígado/efectos de los fármacos , Triazoles/toxicidad , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos , Microsomas Hepáticos/enzimología , Análisis de Secuencia por Matrices de Oligonucleótidos
15.
Toxicol Appl Pharmacol ; 215(3): 260-73, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16643972

RESUMEN

Four triazole fungicides were studied using toxicogenomic techniques to identify potential mechanisms of action. Adult male Sprague-Dawley rats were dosed for 14 days by gavage with fluconazole, myclobutanil, propiconazole, or triadimefon. Following exposure, serum was collected for hormone measurements, and liver and testes were collected for histology, enzyme biochemistry, or gene expression profiling. Body and testis weights were unaffected, but liver weights were significantly increased by all four triazoles, and hepatocytes exhibited centrilobular hypertrophy. Myclobutanil exposure increased serum testosterone and decreased sperm motility, but no treatment-related testis histopathology was observed. We hypothesized that gene expression profiles would identify potential mechanisms of toxicity and used DNA microarrays and quantitative real-time PCR (qPCR) to generate profiles. Triazole fungicides are designed to inhibit fungal cytochrome P450 (CYP) 51 enzyme but can also modulate the expression and function of mammalian CYP genes and enzymes. Triazoles affected the expression of numerous CYP genes in rat liver and testis, including multiple Cyp2c and Cyp3a isoforms as well as other xenobiotic metabolizing enzyme (XME) and transporter genes. For some genes, such as Ces2 and Udpgtr2, all four triazoles had similar effects on expression, suggesting possible common mechanisms of action. Many of these CYP, XME and transporter genes are regulated by xeno-sensing nuclear receptors, and hierarchical clustering of CAR/PXR-regulated genes demonstrated the similarities of toxicogenomic responses in liver between all four triazoles and in testis between myclobutanil and triadimefon. Triazoles also affected expression of multiple genes involved in steroid hormone metabolism in the two tissues. Thus, gene expression profiles helped identify possible toxicological mechanisms of the triazole fungicides.


Asunto(s)
Antifúngicos/toxicidad , Fungicidas Industriales/toxicidad , Hígado/efectos de los fármacos , Testículo/efectos de los fármacos , Triazoles/toxicidad , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Ratas Sprague-Dawley , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Testículo/metabolismo , Testosterona/sangre
16.
Toxicol Lett ; 164(1): 44-53, 2006 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-16406388

RESUMEN

This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods were used as measures of Cyp enzyme activities. Western analyses identified specific Cyp isoforms. Quantitative real-time reverse-transcription polymerase chain reaction (quantitative real time-RT-PCR) assays were used to quantitate the mRNA expression of specific Cyp genes induced by this conazole. Rats and mice were administered fluconazole 2, 25, or 50 mg/kg bw/d by gavage daily for 14 days. In rats, fluconazole treatment (50 mg/kg bw/d) significantly induced pentoxyresorufin O-dealkylation (PROD), benzyloxyresorufin O-dealkylation (BROD), and ethoxyresorufin O-dealkylation (EROD) hepatic microsomal activities. Fluconazole treatment significantly increased rat hepatic mRNA expression of CYP2B1 and CYP3A23/3A1 with dose-related responses. The highest dose of fluconazole gave a 128-fold induction of CYP2B1 and a 4.6-fold induction of CYP3A23/3A1 mRNA. CYP3A2 mRNA levels were also overexpressed 5.6-7.2-fold depending on dose. Western immunoblots of rat hepatic microsomal proteins identified Cyp isoforms: CYP1A1, CYP1A2, CYP2B1/2, CYP3A23/3A1, and Cyp3A2 with increased levels of CYP2B1/2 and CYP3A23/3A1 proteins. In mice, fluconazole induced BROD, PROD, EROD, and methoxyresorufin O-dealkylation hepatic microsomal activities after treatment with 25 and 50 mg/kg bw/d. Fluconazole increased mouse hepatic mRNA expression of Cyp2b10 (1.9-fold) and Cyp3a11 (2.6-fold) in the 50 mg/kg bw/d treatment group. In summary, these results indicated that fluconazole, a triazole-containing conazole, clearly induced CYP2B and CYP3A families of isoforms in rat liver and Cyp2b and Cyp3a families of isoforms in mouse liver.


Asunto(s)
Antifúngicos/efectos adversos , Sistema Enzimático del Citocromo P-450/genética , Fluconazol/efectos adversos , Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Animales , Western Blotting , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado/enzimología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos , Tamaño de los Órganos/efectos de los fármacos , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Reprod Toxicol ; 19(3): 411-9, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15686874

RESUMEN

Reproductive toxicogenomic studies generate large amounts of toxicological and genomic data. On the toxicology side, a substantial quantity of data accumulates from conventional endpoints such as histology, reproductive physiology and biochemistry. The largest source of genomics data is DNA microarrays, which generate enormous amounts of information in the course of profiling gene expression. Thus, data storage and management become essential and require a more sophisticated system than lab notebooks and electronic spreadsheets. We developed a database for tracking toxicogenomic samples and procedures (TSP 1.0) for our reproductive studies based on the MIAME-Tox guidelines and relational database theory. This database stores the various types of data from both toxicological and genomic assays in a hierarchical fashion. The user-friendly interface provides easy procedures for researchers to add, edit, save, delete, and navigate different records. Finally, TSP facilitates exporting microarray data into public databases.


Asunto(s)
Sistemas de Administración de Bases de Datos , Bases de Datos Factuales , Genómica/métodos , Almacenamiento y Recuperación de la Información , Análisis de Secuencia por Matrices de Oligonucleótidos , Toxicología/métodos , Perfilación de la Expresión Génica , Informática en Salud Pública , Sector Público , Interfaz Usuario-Computador
18.
Toxicol Lett ; 155(2): 277-87, 2005 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15603923

RESUMEN

Propiconazole is a N-substituted triazole used as a fungicide on fruits, grains, seeds, hardwoods, and conifers. In the present study, propiconazole was examined for its effects on the expression of hepatic cytochrome P450 genes and on the activities of P450 enzymes in male Sprague-Dawley rats and male CD-1 mice. Rats and mice were administered propiconazole by gavage daily for 14 days at doses of 10, 75, and 150 mg/kg body weight/day. Quantitative real time RT-PCR assays of rat hepatic RNA samples from animals treated at the 150 mg/kg body weight/day dose revealed significant mRNA overexpression of the following genes compared to control: CYP1A2 (1.62-fold), CYP2B1 (10.8-fold), CYP3A1/CYP3A23 (2.78-fold), and CYP3A2 (1.84-fold). In mouse liver, propiconazole produced mRNA overexpression of Cyp2b10 (2.39-fold) and Cyp3a11 (5.19-fold). mRNA expression of CYP1A1 was not detected in liver tissues from treated or controls animals from either species. Propiconazole significantly induced both pentoxyresorufin O-dealkylation (PROD) and methoxyresorufin O-dealkylation (MROD) activities in both rat and mouse liver at the 150 mg/kg body weight/day and 75 mg/kg body weight/day doses. In summary, these results indicated that propiconazole induced CYP1A2 in rat liver and CYP2B and CYP3A families of isoforms in rat and mouse liver.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Fungicidas Industriales/toxicidad , Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Triazoles/toxicidad , Administración Oral , Animales , Peso Corporal/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/genética , Hígado/enzimología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Tamaño de los Órganos/efectos de los fármacos , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...