Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34681665

RESUMEN

In utero, the fetus and its lungs develop in a hypoxic environment, where HIF-1α and VEGFA signaling constitute major determinants of further development. Disruption of this homeostasis after preterm delivery and extrauterine exposure to high fractions of oxygen are among the key events leading to bronchopulmonary dysplasia (BPD). Reactive oxygen species (ROS) production constitutes the initial driver of pulmonary inflammation and cell death, altered gene expression, and vasoconstriction, leading to the distortion of further lung development. From preclinical studies mainly performed on rodents over the past two decades, the deleterious effects of oxygen toxicity and the injurious insults and downstream cascades arising from ROS production are well recognized. This article provides a concise overview of disease drivers and different therapeutic approaches that have been successfully tested within experimental models. Despite current studies, clinical researchers are still faced with an unmet clinical need, and many of these strategies have not proven to be equally effective in clinical trials. In light of this challenge, adapting experimental models to the complexity of the clinical situation and pursuing new directions constitute appropriate actions to overcome this dilemma. Our review intends to stimulate research activities towards the understanding of an important issue of immature lung injury.


Asunto(s)
Pulmón/efectos de los fármacos , Oxígeno/toxicidad , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Epigénesis Genética , Humanos , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Mitocondrias/metabolismo , Neovascularización Fisiológica , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo
2.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-33498887

RESUMEN

Bronchopulmonary dysplasia (BPD) remains one of the most devastating consequences of preterm birth resulting in life-long restrictions in lung function. Distorted lung development is caused by its inflammatory response which is mainly provoked by mechanical ventilation, oxygen toxicity and bacterial infections. Dysfunction of resident lung mesenchymal stem cells (MSC) represents one key hallmark that drives BPD pathology. Despite all progress in the understanding of pathomechanisms, therapeutics to prevent or treat BPD are to date restricted to a few drugs. The limited therapeutic efficacy of established drugs can be explained by the fact that they fail to concurrently tackle the broad spectrum of disease driving mechanisms and by the huge overlap between distorted signal pathways of lung development and inflammation. The great enthusiasm about MSC based therapies as novel therapeutic for BPD arises from the capacity to inhibit inflammation while simultaneously promoting lung development and repair. Preclinical studies, mainly performed in rodents, raise hopes that there will be finally a broadly acting, efficient therapy at hand to prevent or treat BPD. Our narrative review gives a comprehensive overview on preclinical achievements, results from first early phase clinical studies and challenges to a successful translation into the clinical setting.


Asunto(s)
Displasia Broncopulmonar/terapia , Trasplante de Células Madre Mesenquimatosas , Displasia Broncopulmonar/prevención & control , Humanos , Pulmón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...