RESUMEN
BACKGROUND: Cross-resistance between pre-emergence herbicides is developing in Australian populations of annual ryegrass (Lolium rigidum Gaud.). A previous study has reported that selection with prosulfocarb (a pro-herbicide requiring bioactivation to its phytotoxic sulfoxide) can decrease metabolic resistance to trifluralin. Metabolism of prosulfocarb and trifluralin was investigated in L. rigidum populations with different levels of resistance to prosulfocarb, trifluralin and also pyroxasulfone, which is detoxified by glutathione (GSH) conjugation. RESULTS: Coleoptiles and radicles of herbicide-treated seedlings responded differently to the same herbicide. Radicles had a lower capacity for bioactivation of prosulfocarb, and this was correlated with a lower ability to metabolise trifluralin within and among populations. Coleoptile resistance to prosulfocarb sulfoxide was negatively correlated with abundance of a major polar metabolite. There was no evidence of GSH conjugation with the sulfoxide, making any potential links between prosulfocarb and pyroxasulfone resistance less obvious. CONCLUSIONS: Activation and metabolism of prosulfocarb in L. rigidum is complex and differentially regulated in different tissues. Selection with prosulfocarb may ameliorate trifluralin metabolism in the radicles, but the relationship between prosulfocarb and pyroxasulfone resistance is not GSH-mediated. When applying pre-emergence herbicides, care should be taken with the composition of mixtures and rotations to avoid selection of cross-resistance between pyroxasulfone and prosulfocarb. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
RESUMEN
The synthetic auxin 2,4-D and the 4-hydroxyphenylpyruvate dioxygenase inhibitor pyrasulfotole are phloem-mobile post-emergence herbicides, the latter applied in co-formulation with either bromoxynil (a contact herbicide causing leaf desiccation) or MCPA (another synthetic auxin). Previous studies have shown a wide range of 2,4-D translocation phenotypes in resistant populations of the agricultural weed Raphanus raphanistrum, but it was hypothesised that enhanced movement out of the apical meristem could contribute to resistance. Little is known about pyrasulfotole translocation or the effect of bromoxynil on pyrasulfotole movement. Therefore, the behaviour of pyrasulfotole and 2,4-D applied to the growing point of susceptible and resistant R. raphanistrum seedlings was assessed, along with the effect of bromoxynil on pyrasulfotole translocation. The small amount of herbicide directly contacting the growing point after spraying was sufficient to induce herbicide symptoms, and there was no enhancement of translocation away from the growing point in either pyrasulfotole- or 2,4-D-resistant populations. Bromoxynil had a slightly inhibitory effect on pyrasulfotole translocation in some populations, somewhat negating the minor differences observed among populations when pyrasulfotole was applied alone. Resistance to pyrasulfotole could not explained by enhanced metabolism or vacuolar sequestration of the herbicide. Overall, differential translocation in either the treated leaves or apical meristems does not appear to be a major determinant of resistance to pyrasulfotole or 2,4-D.
Asunto(s)
Ácido 2,4-Diclorofenoxiacético , Resistencia a los Herbicidas , Herbicidas , Raphanus , Herbicidas/farmacología , Ácido 2,4-Diclorofenoxiacético/farmacología , Raphanus/efectos de los fármacos , Raphanus/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Pironas/farmacología , Transporte Biológico , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Isoxazoles , Nitrilos , SulfonasRESUMEN
BACKGROUND: Raphanus raphanistrum causes $40 million total revenue losses annually in Western Australia partly due to its historically-documented ability to evolve herbicide resistance to multiple modes of action. In this study, 376 field-sampled populations of R. raphanistrum were tested for resistance to 21 herbicides applied at the recommended label rate. Eight treatments were herbicide mixtures with two, three or four modes of action. RESULTS: A total of 7199 individual resistance tests were conducted across 4 years by screening approximately 104 000 individual seeds and seedlings. The mean survival of individuals within a population for all standalone herbicides was 9%, whereas survival was significantly decreased to 3.5% with a herbicide mixture. Some herbicides such as triasulfuron (herbicide Group 2), 2,4-D (Group 4) or diflufenican (Group 12) were highly impacted by resistance, with frequencies of resistant populations being > 50%. Conversely, there was negligible resistance to glyphosate (Group 9) or protoporphyrinogen oxidase (PPO) inhibitors (tiafenacil, saflufenacil + trifludimoxazin, fomesafen: Group 14), and pre-emergence herbicides (i.e., atrazine or mesotrione: Groups 5 and 27, respectively) remained largely effective. Binary, ternary or quaternary mixtures of Groups 4, 6, 12 and 27 herbicides reduced the frequency of high-level resistant populations to 7.1%, 3.8% or 0%, respectively. CONCLUSIONS: The cost-effective control of R. raphanistrum remains a challenge due to herbicide resistance. Raphanus raphanistrum management relies heavily on herbicide uses not yet compromised by resistance, such as pre-emergence herbicides (atrazine, fomesafen, mesotrione), glyphosate, and mixtures of two, three or four modes of action including bromoxynil, diflufenican, MCPA, picolinafen, pyrasulfotole and topramezone. Strategies that integrate effective herbicide use patterns, novel modes of action and efficiently-mechanized non-chemical weed control options (i.e., seed destructors) can completely constrain the selection of herbicide resistance in this highly adaptable species. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
RESUMEN
Resistance to the herbicide pyroxasulfone has slowly but steadily increased in agricultural weeds. The evolved resistance of one Lolium rigidum population has been attributed to the conjugation of pyroxasulfone to reduced glutathione, mediated by glutathione transferase (GST) activity. To determine if GST-based metabolism is a widespread mechanism of pyroxasulfone resistance in L. rigidum, a number of putative-resistant populations were screened for GST activity toward pyroxasulfone, the presence of GSTF13-like isoforms (previously implicated in pyroxasulfone conjugation in this species), tissue glutathione concentrations, and response to inhibitors of GSTs and oxygenases. Although there were no direct correlations between pyroxasulfone resistance levels and these individual parameters, a random forest analysis indicated that GST activity was of primary importance for L. rigidum resistance to this herbicide.
Asunto(s)
Herbicidas , Lolium , Sulfonas , Resistencia a los Herbicidas , Herbicidas/farmacología , Herbicidas/metabolismo , Isoxazoles/farmacología , Glutatión/metabolismoRESUMEN
BACKGROUND: Brome grass (Bromus diandrus Roth) is prevalent in the southern and western cropping regions of Australia, where it causes significant economic damage. A targeted herbicide resistance survey was conducted in 2020 by collecting brome grass populations from 40 farms in Western Australia and subjecting these samples to comprehensive herbicide screening. One sample (population 172-20), from a field that had received 12 applications of clethodim over 20 years of continuous cropping, was found to be highly resistant to the acetyl-CoA carboxylase (ACCase)-inhibiting herbicides clethodim and quizalofop, and so the molecular basis of resistance was investigated. RESULTS: All 31 individuals examined from population 172-20 carried the same resistance-endowing point mutation causing an aspartate-to-glycine substitution at position 2078 in the translated ACCase protein sequence. A wild-type susceptible population and the resistant population had similar expression levels of plastidic ACCase genes. The level of resistance to quizalofop, either standalone or in mixture with clethodim, in population 172-20 was lower under cooler growing conditions. CONCLUSION: Target-site resistance to ACCase-inhibiting herbicides, conferred by one ACCase mutation, was selected in all tested brome plants infesting a field with a history of repeated clethodim use. This mutation appears to have been fixed in the infesting population. Notably, clethodim resistance in this population was not detected by the farmer, and a high future incidence of quizalofop resistance is anticipated. Herbicide resistance testing is essential for the detection of evolving weed resistance issues and to inform effective management strategies. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Asunto(s)
Bromus , Ciclohexanonas , Herbicidas , Propionatos , Quinoxalinas , Humanos , Mutación , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Acetil-CoA Carboxilasa/genética , Poaceae , Proteínas de Plantas/genéticaRESUMEN
BACKGROUND: Cinmethylin, a pre-emergence herbicide inhibiting fatty acid thioesterase activity, has recently been introduced to Australian cereal cropping for the control of Lolium rigidum Gaud. (annual ryegrass). To date, there have been no confirmed cases of cinmethylin resistance identified in this species, but some populations exhibit reduced sensitivity to this herbicide. To explore the mechanism which contributes to reduced sensitivity of annual ryegrass to cinmethylin, the extent and nature of cinmethylin metabolism, using carbon-14 (14 C)-labelled herbicide, were analysed in three reduced-sensitivity annual ryegrass populations, alongside a susceptible population and cinmethylin-tolerant wheat as controls. RESULTS: All samples showed the same metabolite profile, with the extent of production of a specific water-soluble metabolite being correlated to the level of herbicide sensitivity. Application of the cytochrome P450 inhibitor phorate caused a decrease in water-soluble metabolite production as well as seedling growth in the presence of cinmethylin, indicating that reduced cinmethylin sensitivity in annual ryegrass could be wholly or partially due to oxidative modification of cinmethylin. CONCLUSION: Because annual ryegrass has the potential to metabolize cinmethylin in the same way as wheat, careful stewardship is required to ensure the longevity of this herbicide. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Asunto(s)
Herbicidas , Lolium , Australia , Radioisótopos de Carbono/metabolismo , Resistencia a los Herbicidas , Herbicidas/metabolismo , Herbicidas/farmacología , Triticum/metabolismo , Agua/metabolismoRESUMEN
Overreliance on herbicides for weed control is conducive to the evolution of herbicide resistance. Lolium rigidum (annual ryegrass) is a species that is prone to evolve resistance to a wide range of herbicide modes of action. Rapid detection of herbicide-resistant weed populations in the field can aid farmers to optimize the use of effective herbicides for their control. The feasibility and utility of a rapid 7-d agar-based assay to reliably detect L. rigidum resistant to key pre- and post-emergence herbicides including clethodim, glyphosate, pyroxasulfone and trifluralin were investigated in three phases: correlation with traditional pot-based dose-response assays, effect of seed dormancy, and stability of herbicides in agar. Easy-to-interpret results were obtained using non-dormant seeds from susceptible and resistant populations, and resistance was detected similarly as pot-based assays. However, the test is not suitable for trifluralin because of instability in agar as measured over a 10-d period, as well as freshly-harvested seeds due to primary dormancy. This study demonstrates the utility of a portable and rapid assay that allows for on-farm testing of clethodim, glyphosate, and pyroxasulfone resistance in L. rigidum, thereby aiding the identification and implementation of effective herbicide control options.
RESUMEN
The herbicide pyroxasulfone was widely introduced in 2012, and cases of evolved resistance in weeds such as annual ryegrass (Lolium rigidum Gaud.) and tall waterhemp [Amaranthus tuberculatus (Moq.) Sauer] have started to emerge. Pyroxasulfone is detoxified by tolerant crops, and by annual ryegrass that has been recurrently selected with pyroxasulfone, in a pathway that is hypothesized to involve glutathione conjugation. In the current study, it was confirmed that pyroxasulfone is conjugated to glutathione in vitro by glutathione transferases (GSTs) purified from susceptible and resistant annual ryegrass populations and from a tolerant crop species, wheat. The extent of conjugation corresponded to the pyroxasulfone resistance level. Pyroxasulfone-conjugating activity was higher in radicles, roots, and seeds compared to coleoptiles or expanded leaves. Among the GSTs purified from annual ryegrass radicles and seeds, an orthologue of Brachypodium distachyon GSTF13 was >20-fold more abundant in the pyroxasulfone-resistant population, suggesting that this protein could be responsible for pyroxasulfone conjugation.
Asunto(s)
Herbicidas , Lolium , Glutatión Transferasa/genética , Resistencia a los Herbicidas , Herbicidas/farmacología , Isoxazoles , SulfonasRESUMEN
BACKGROUND: Resistance to the dinitroaniline herbicide trifluralin in Lolium rigidum (annual ryegrass) often is mediated by the enhanced capacity to metabolize the herbicide to less toxic polar conjugates and/or by functionally recessive target-site mutations in α-tubulin. RESULTS: In two L. rigidum populations possessing enhanced trifluralin metabolism, resistance was largely reversed by recurrent selection with the thiocarbamate herbicide prosulfocarb (i.e. plant survival was two- to >20-fold lower). Their ability to metabolize trifluralin was significantly decreased (by ≈2.3-fold) following recurrent prosulfocarb selection, to levels comparable to those observed in susceptible plants or when trifluralin metabolism was inhibited by treatment with the insecticide phorate. CONCLUSIONS: This study provides evidence that trait(s) enabling efficient trifluralin metabolism in L. rigidum are purged from the population under prosulfocarb recurrent selection. The level of trifluralin metabolism in vitro and its inhibition caused by phorate action on trifluralin-metabolizing enzyme(s) is equivalent to the effect produced by prosulfocarb selection. The hypothetical link between the two phenomena is that the putative monooxygenase(s) conferring trifluralin metabolic resistance also mediate the activation of prosulfocarb to its toxic sulfoxide. Thus, we speculate that survival to prosulfocarb via a lack of metabolic herbicide activation, and survival to trifluralin conferred by enhanced herbicide metabolism, are mutually exclusive. These findings not only open up a new research direction in terms of the interaction between different herbicide resistance mechanisms in L. rigidum, but also offer strategies for immediate management of the population dynamics of metabolism-based resistance in the field. © 2020 Society of Chemical Industry.
Asunto(s)
Herbicidas , Lolium , Carbamatos , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Lolium/genética , Trifluralina/farmacologíaRESUMEN
BACKGROUND: Multiple-herbicide resistance in Lolium rigidum and other weed species is increasingly exerting pressure on herbicide discovery research for solutions against resistance-prone weeds. In this study we investigate: (i) the responses of L. rigidum populations and wheat to the new herbicide cinmethylin in comparison with other pre-emergence herbicides, (ii) the effect of seed burial depths on cinmethylin efficacy and crop selectivity, and (iii) the basis of cinmethylin selectivity in wheat. RESULTS: Cinmethylin at 400 g ha-1 controls herbicide-susceptible and multiple-resistant L. rigidum, with a reduction of >85% in plant emergence and 90% in aboveground biomass. Cinmethylin provides effective control of a large number of field populations of L. rigidum with evident resistance to trifluralin. When the wheat seed is buried ≥1 cm below the cinmethylin-treated soil surface, the emergence of crop seedlings is not different from the untreated control. The organophosphate insecticide phorate synergizes cinmethylin toxicity in wheat, with an LD50 of 682 g ha-1 in the absence of phorate versus 109 g ha-1 in the presence of phorate (84% reduction). The synergistic effect of phorate with cinmethylin on herbicide-susceptible L. rigidum appears smaller (a 44% reduction in the LD50 of cinmethylin). CONCLUSIONS: Cinmethylin is effective in controlling multiple-resistant L. rigidum and appears safe for wheat when the seed is separated at depth from the herbicide applied to the soil surface. The basis of this metabolism-based selectivity is likely regulated by cytochrome P450 monooxygenases. © 2020 Society of Chemical Industry.
Asunto(s)
Lolium , Herbicidas , Trifluralina , TriticumRESUMEN
BACKGROUND: A Lolium rigidum population collected from Western Australia was previously reported as highly resistant to dinitroaniline herbicides mainly due to a Val-202-Phe substitution in the target site α-tubulin protein. To further determine the contribution of the 202 mutation to resistance, two sub-populations, respectively comprising the 202 mutant and wild-type (WT) individuals, were isolated from within the same resistant population and subject to dinitroaniline herbicide doses. A rice transgenic study was conducted to demonstrate whether the amino acid substitution at the 202 residue confers resistance. In addition, as indicated in the phenotyping and genotyping study, non-target enhanced trifluralin metabolism was further examined in the same population. RESULTS: The 202 mutants were more resistant than the wild-type plants. Rice calli transformed with the L. rigidum mutant α-tubulin gene (Val-202-Phe) were more resistant to dinitroaniline herbicides relative to calli transformed with the wild-type gene. Also, enhanced trifluralin metabolism was detected in the 202 mutants in comparison to the susceptible seedlings. CONLCUSION: Both target-site Val-202-Phe α-tubulin mutation and non-target-site enhanced trifluralin metabolism co-exist in this dinitroaniline-resistant L. rigidum population. © 2019 Society of Chemical Industry.
Asunto(s)
Mutación , Resistencia a los Herbicidas , Herbicidas , Lolium , Tubulina (Proteína) , Australia OccidentalRESUMEN
BACKGROUND AND AIMS: Resistance to the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) in wild radish (Raphanus raphanistrum) appears to be due to a complex, multifaceted mechanism possibly involving enhanced constitutive plant defence and alterations in auxin signalling. Based on a previous gene expression analysis highlighting the plasma membrane as being important for 2,4-D resistance, this study aimed to identify the components of the leaf plasma membrane proteome that contribute to resistance. METHODS: Isobaric tagging of peptides was used to compare the plasma membrane proteomes of a 2,4-D-susceptible and a 2,4-D-resistant wild radish population under control and 2,4-D-treated conditions. Eight differentially abundant proteins were then targeted for quantification in the plasma membranes of 13 wild radish populations (two susceptible, 11 resistant) using multiple reaction monitoring. KEY RESULTS: Two receptor-like kinases of unknown function (L-type lectin domain-containing receptor kinase IV.1-like and At1g51820-like) and the ATP-binding cassette transporter ABCB19, an auxin efflux transporter, were identified as being associated with auxinic herbicide resistance. The variability between wild radish populations suggests that the relative contributions of these candidates are different in the different populations. CONCLUSIONS: To date, no receptor-like kinases have been reported to play a role in 2,4-D resistance. The lectin-domain-containing kinase may be involved in perception of 2,4-D at the plasma membrane, but its ability to bind 2,4-D and the identity of its signalling partner(s) need to be confirmed experimentally. ABCB19 is known to export auxinic compounds, but its role in 2,4-D resistance in wild radish appears to be relatively minor.
Asunto(s)
Herbicidas/farmacología , Raphanus/efectos de los fármacos , Ácido 2,4-Diclorofenoxiacético , Membrana Celular/efectos de los fármacos , Resistencia a los HerbicidasRESUMEN
Synthetic auxin herbicides, such as 2,4-dichlorophenoxyacetic acid (2,4-D), are widely used for selective control of broadleaf weeds in cereals and transgenic crops. Although the troublesome weed wild radish ( Raphanus raphanistrum) has developed resistance to 2,4-D, no populations have yet displayed an enhanced capacity for metabolic detoxification of the herbicide, with both susceptible and resistant wild radish plants readily metabolizing 2,4-D. Using mass spectrometry and nuclear magnetic resonance, the major 2,4-D metabolite was identified as the glucose ester, and its structure was confirmed by synthesis. As expected, both the endogenous and synthetic compounds retained auxin activity in a bioassay. The lack of detectable 2,4-D hydroxylation in wild radish and the lability of the glucose ester suggest that metabolic 2,4-D resistance is unlikely to develop in this species.
Asunto(s)
Ácido 2,4-Diclorofenoxiacético/química , Ácido 2,4-Diclorofenoxiacético/metabolismo , Herbicidas/química , Herbicidas/metabolismo , Raphanus/metabolismo , Ácido 2,4-Diclorofenoxiacético/farmacología , Herbicidas/farmacología , Espectrometría de Masas , Estructura Molecular , Raphanus/química , Raphanus/efectos de los fármacosRESUMEN
Resistance to the pre-emergence herbicide trifluralin is increasing in Australian annual ryegrass ( Lolium rigidum) populations. Three L. rigidum populations (R1, R2, and R3) collected from Australian grain fields were identified with trifluralin resistance. Both target-site and nontarget-site resistance mechanisms were investigated. No target-site α-tubulin mutations were detected in populations R1 and R3, while an Arg-243-Lys mutation was found in R2. Compared with the three trifluralin-susceptible populations, enhanced [14C]-trifluralin metabolism, quantified by measuring the amount of [14C] label partitioning into the polar phase of a hexane:methanol system, was identified in all the three resistant populations. This is the first report of metabolic resistance to trifluralin. Coevolution of target-site and nontarget-site resistance to trifluralin is occurring, and metabolic resistance is not rare in L. rigidum populations in Australia. A method was established for trifluralin metabolic resistance detection, overcoming the difficulties of quantifying this highly volatile herbicide by chromatographic methods.
Asunto(s)
Resistencia a los Herbicidas , Herbicidas/metabolismo , Lolium/metabolismo , Trifluralina/metabolismo , Australia , Herbicidas/farmacología , Lolium/efectos de los fármacos , Trifluralina/farmacologíaRESUMEN
Background and Aims: Resistance to synthetic auxin herbicides such as 2,4-dichlorophenoxyacetic acid (2,4-D) is increasing in weed populations worldwide, which is of concern given the recent introduction of synthetic auxin-resistant transgenic crops. Due to the complex mode of action of the auxinic herbicides, the mechanisms of evolved resistance remain largely uncharacterized. The aims of this study were to assess the level of diversity in resistance mechanisms in 11 populations of the problem weed Raphanus raphanistrum, and to use a high-throughput, whole-genome transcriptomic analysis on one resistant and one susceptible population to identify important changes in gene expression in response to 2,4-D. Methods: Levels of 2,4-D and dicamba (3,6-dichloro-2-methoxybenzoic acid) resistance were quantified in a dose-response study and the populations were further screened for auxin selectivity, 2,4-D translocation and metabolism, expression of key 2,4-D-responsive genes and activation of the mitogen-activated proein kinase (MAPK) pathway. Potential links between resistance levels and mechanisms were assessed using correlation analysis. Key Results: The transcriptomic study revealed early deployment of the plant defence response in the 2,4-D-treated resistant population, and there was a corresponding positive relationship between auxinic herbicide resistance and constitutive MAPK phosphorylation across all populations. Populations with shoot-wide translocation of 2,4-D had similar resistance levels to those with restricted translocation, suggesting that reduced translocation may not be as strong a resistance mechanism as originally thought. Differences in auxin selectivity between populations point to the likelihood of different resistance-conferring alterations in auxin signalling and/or perception in the different populations. Conclusions: 2,4-D resistance in wild radish appears to result from subtly different auxin signalling alterations in different populations, supplemented by an enhanced defence response and, in some cases, reduced 2,4-D translocation. This study highlights the dangers of applying knowledge generated from a few populations of a weed species to the species as a whole.
Asunto(s)
Resistencia a los Herbicidas , Herbicidas/farmacología , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raphanus/fisiología , Transducción de Señal , Ácido 2,4-Diclorofenoxiacético/farmacología , Dicamba/farmacología , Raphanus/efectos de los fármacos , Especificidad de la EspecieRESUMEN
Herbicides classified as synthetic auxins have been most commonly used to control broadleaf weeds in a variety of crops and in non-cropland areas since the first synthetic auxin herbicide (SAH), 2,4-D, was introduced to the market in the mid-1940s. The incidence of weed species resistant to SAHs is relatively low considering their long-term global application with 30 broadleaf, 5 grass, and 1 grass-like weed species confirmed resistant to date. An understanding of the context and mechanisms of SAH resistance evolution can inform management practices to sustain the longevity and utility of this important class of herbicides. A symposium was convened during the 2nd Global Herbicide Resistance Challenge (May 2017; Denver, CO, USA) to provide an overview of the current state of knowledge of SAH resistance mechanisms including case studies of weed species resistant to SAHs and perspectives on mitigating resistance development in SAH-tolerant crops. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Asunto(s)
Resistencia a los Herbicidas , Herbicidas/farmacología , Ácidos Indolacéticos/farmacología , Malezas/efectos de los fármacos , Herbicidas/síntesis química , Ácidos Indolacéticos/síntesis química , Control de MalezasRESUMEN
Resistance to auxinic herbicides is increasing in a range of dicotyledonous weed species, but in most cases the biochemical mechanism of resistance is unknown. Using (14)C-labelled herbicide, the mechanism of resistance to 2,4-dichlorophenoxyacetic acid (2,4-D) in two wild radish (Raphanus raphanistrum L.) populations was identified as an inability to translocate 2,4-D out of the treated leaf. Although 2,4-D was metabolized in wild radish, and in a different manner to the well-characterized crop species wheat and bean, there was no difference in metabolism between the susceptible and resistant populations. Reduced translocation of 2,4-D in the latter was also not due to sequestration of the herbicide, or to reduced uptake by the leaf epidermis or mesophyll cells. Application of auxin efflux or ABCB transporter inhibitors to 2,4-D-susceptible plants caused a mimicking of the reduced-translocation resistance phenotype, suggesting that 2,4-D resistance in the populations under investigation could be due to an alteration in the activity of a plasma membrane ABCB-type auxin transporter responsible for facilitating long-distance transport of 2,4-D.
Asunto(s)
Ácido 2,4-Diclorofenoxiacético/farmacología , Resistencia a los Herbicidas , Herbicidas/farmacología , Raphanus/efectos de los fármacos , Transporte Biológico Activo , Raphanus/metabolismoRESUMEN
BACKGROUND: Lolium rigidum (annual ryegrass) is a widespread annual crop weed that has evolved high levels of resistance to selective herbicides. Anecdotal evidence suggests that intensive cropping also leads to higher seed dormancy in L. rigidum. This was quantified by measuring dormancy levels in L. rigidum populations collected from paired sites (one with nil to low cropping intensity, the other intensively cropped) located throughout the Western Australian grain belt. RESULTS: Populations from non-cropped fields or those with low cropping intensity showed higher and faster germination than populations from fields with a medium- or high-intensity cropping regime. Resistance to selective herbicides was also higher in the medium- and high-intensity cropping fields than in the low-intensity cropping fields. CONCLUSION: High-intensity cropping systems are likely to impose greater selection pressures for seed dormancy and selective herbicide resistance, because late-emerging seedlings avoid preplanting weed control practices (tillage and non-selective herbicide application) but are exposed to selective in-crop herbicides.
Asunto(s)
Resistencia a los Herbicidas , Lolium/crecimiento & desarrollo , Latencia en las Plantas , Productos Agrícolas , Germinación , Herbicidas , Plantones/efectos de los fármacos , Control de Malezas/métodos , Australia OccidentalRESUMEN
Seed persistence is the survival of seeds in the environment once they have reached maturity. Seed persistence allows a species, population or genotype to survive long after the death of parent plants, thus distributing genetic diversity through time. The ability to predict seed persistence accurately is critical to inform long-term weed management and flora rehabilitation programs, as well as to allow a greater understanding of plant community dynamics. Indeed, each of the 420000 seed-bearing plant species has a unique set of seed characteristics that determine its propensity to develop a persistent soil seed bank. The duration of seed persistence varies among species and populations, and depends on the physical and physiological characteristics of seeds and how they are affected by the biotic and abiotic environment. An integrated understanding of the ecophysiological mechanisms of seed persistence is essential if we are to improve our ability to predict how long seeds can survive in soils, both now and under future climatic conditions. In this review we present an holistic overview of the seed, species, climate, soil, and other site factors that contribute mechanistically to seed persistence, incorporating physiological, biochemical and ecological perspectives. We focus on current knowledge of the seed and species traits that influence seed longevity under ex situ controlled storage conditions, and explore how this inherent longevity is moderated by changeable biotic and abiotic conditions in situ, both before and after seeds are dispersed. We argue that the persistence of a given seed population in any environment depends on its resistance to exiting the seed bank via germination or death, and on its exposure to environmental conditions that are conducive to those fates. By synthesising knowledge of how the environment affects seeds to determine when and how they leave the soil seed bank into a resistance-exposure model, we provide a new framework for developing experimental and modelling approaches to predict how long seeds will persist in a range of environments.
Asunto(s)
Ecosistema , Germinación/fisiología , Plantas/clasificación , Semillas/fisiología , Plantas/genética , SueloRESUMEN
BACKGROUND AND AIMS: Dormancy in Lolium rigidum (annual ryegrass) seeds can be alleviated by warm stratification in the dark or by application of fluridone, an inhibitor of plant abscisic acid (ABA) biosynthesis via phytoene desaturase. However, germination and absolute ABA concentration are not particularly strongly correlated. The aim of this study was to determine if cytokinins of both plant and bacterial origin are involved in mediating dormancy status and in the response to fluridone. METHODS: Seeds with normal or greatly decreased (by dry heat pre-treatment) bacterial populations were stratified in the light or dark and in the presence or absence of fluridone in order to modify their dormancy status. Germination was assessed and seed cytokinin concentration and composition were measured in embryo-containing or embryo-free seed portions. KEY RESULTS: Seeds lacking bacteria were no longer able to lose dormancy in the dark unless supplied with exogenous gibberellin or fluridone. Although these seeds showed a dramatic switch from active cytokinin free bases to O-glucosylated storage forms, the concentrations of individual cytokinin species were only weakly correlated to dormancy status. However, cytokinins of apparently bacterial origin were affected by fluridone and light treatment of the seeds. CONCLUSIONS: It is probable that resident microflora contribute to dormancy status in L. rigidum seeds via a complex interaction between hormones of both plant and bacterial origin. This interaction needs to be taken into account in studies on endogenous seed hormones or the response of seeds to plant growth regulators.