Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175599

RESUMEN

The Na+-activated Na+ channel (Nax) and salt-inducible kinase (SIK) are stimulated by increases in local Na+ concentration, affecting (Na+ + K+)-ATPase activity. To test the hypothesis that the triad Nax/SIK/(Na+ + K+)-ATPase contributes to kidney injury and salt-sensitive hypertension (HTN), uninephrectomized male Wistar rats (200 g; n = 20) were randomly divided into 4 groups based on a salt diet (normal salt diet; NSD-0.5% NaCl-or high-salt diet; HSD-4% NaCl) and subcutaneous administration of saline (0.9% NaCl) or deoxycorticosterone acetate (DOCA, 8 mg/kg), as follows: Control (CTRL), CTRL-Salt, DOCA, and DOCA-Salt, respectively. After 28 days, the following were measured: kidney function, blood pressure, (Na+ + K+)-ATPase and SIK1 kidney activities, and Nax and SIK1 renal expression levels. SIK isoforms in kidneys of CTRL rats were present in the glomerulus and tubular epithelia; they were not altered by HSD and/or HTN. CTRL-Salt rats remained normotensive but presented slight kidney function decay. HSD rats displayed augmentation of the Nax/SIK/(Na+ + K+)-ATPase pathway. HTN, kidney injury, and kidney function decay were present in all DOCA rats; these were aggravated by HSD. DOCA rats presented unaltered (Na+ + K+)-ATPase activity, diminished total SIK activity, and augmented SIK1 and Nax content in the kidney cortex. DOCA-Salt rats expressed SIK1 activity and downregulation in (Na+ + K+)-ATPase activity in the kidney cortex despite augmented Nax content. The data of this study indicate that the (Na+ + K+)-ATPase activity response to SIK is attenuated in rats under HSD, independent of HTN, as a mechanism contributing to kidney injury and salt-sensitive HTN.


Asunto(s)
Acetato de Desoxicorticosterona , Hipertensión , Ratas , Masculino , Animales , Cloruro de Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ratas Wistar , Hipertensión/metabolismo , Sodio/metabolismo , Cloruro de Sodio Dietético/efectos adversos , Cloruro de Sodio Dietético/metabolismo , Presión Sanguínea , Riñón/metabolismo , Iones/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
2.
PLoS One ; 18(5): e0285253, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37163513

RESUMEN

Atherosclerosis is the root cause of major cardiovascular diseases (CVD) such as myocardial infarction and stroke. ADP-ribosylation factor 6 (Arf6) is a ubiquitously expressed GTPase known to be involved in inflammation, vascular permeability and is sensitive to changes in shear stress. Here, using atheroprone, ApoE-/- mice, with a single allele deletion of Arf6 (HET) or wildtype Arf6 (WT), we demonstrate that reduction in Arf6 attenuates atherosclerotic plaque burden and severity. We found that plaque burden in the descending aorta was lower in HET compared to WT mice (p˂0.001) after the consumption of an atherogenic Paigen diet for 5 weeks. Likewise, luminal occlusion, necrotic core size, plaque grade, elastic lamina breaks, and matrix deposition were lower in the aortic root atheromas of HET compared to WT mice (all p≤0.05). We also induced advanced human-like complex atherosclerotic plaque in the left carotid artery using partial carotid ligation surgery and found that atheroma area, plaque grade, intimal necrosis, intraplaque hemorrhage, thrombosis, and calcification were lower in HET compared to WT mice (all p≤0.04). Our findings suggest that the atheroprotection afforded by Arf6 heterozygosity may result from reduced immune cell migration (all p≤0.005) as well as endothelial and vascular smooth muscle cell proliferation (both p≤0.001) but independent of changes in circulating lipids (all p≥0.40). These findings demonstrate a critical role for Arf6 in the development and severity of atherosclerosis and suggest that Arf6 inhibition can be explored as a novel therapeutic strategy for the treatment of atherosclerotic CVD.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Humanos , Ratones , Factor 6 de Ribosilación del ADP , Aorta , Aterosclerosis/genética , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Necrosis , Placa Aterosclerótica/genética
3.
Geroscience ; 45(3): 1913-1931, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37086367

RESUMEN

Using multiple mouse models, we explored the impact of aging on the size and severity of atherosclerotic lesions. In young, middle-aged and old apolipoprotein E knockout mice (ApoE-/-) fed an atherogenic diet (AD) for 3-8 weeks, plaque/atheroma formation in the descending aorta and aortic root, and atheroma development in the carotid in response to partial carotid ligation (PCL) were assessed. Total and LDL cholesterol, and triglycerides were higher in old compared to both other age groups, regardless of AD duration. Aortic plaque burden increased with AD duration in all ages. The size and plaque morphology grade of aortic root atheromas was higher with age; however, there was no effect of age on the size or severity of carotid atheromas after PCL. We additionally induced hyperlipidemia in young and old C57BL/6 mice by adeno-associated virus mediated upregulation of LDL receptor regulator, Pcsk9, and 5 weeks of AD. Despite lower cholesterol in old compared to young Pcsk9 mice, there was a greater size and severity of aortic root atheromas in old mice. However, like the ApoE-/- mice, there was no effect of age on size or severity of PCL-induced carotid artery atheromas in Pcsk9 mice. Together, these results suggest that aging increases the size and severity of spontaneous aortic atheromas.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Ratones , Animales , Proproteína Convertasa 9 , Ratones Endogámicos C57BL , Ratones Noqueados , Apolipoproteínas E/genética
4.
Geroscience ; 45(4): 2351-2365, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36787090

RESUMEN

Advanced age is accompanied by arterial dysfunction, as well as a diminished glycocalyx, which may be linked to reduced high molecular weight-hyaluronan (HMW-HA) synthesis. However, the impact of glycocalyx deterioration in age-related arterial dysfunction is unknown. We sought to determine if manipulations in glycocalyx properties would alter arterial function. Tamoxifen-induced hyaluronan synthase 2 (Has2) reduction was used to decrease glycocalyx properties. Three weeks post-tamoxifen treatment, glycocalyx thickness was lower in Has2 knockout compared to wild-type mice (P<0.05). Has2 reduction induced arterial dysfunction, demonstrated by impaired endothelium-dependent dilation (EDD) and elevated aortic stiffness (P<0.05). To augment glycocalyx properties, old mice received 10 weeks of a glycocalyx-targeted therapy via Endocalyx™ (old+ECX), which contains HMW-HA and other glycocalyx components. Compared to old control mice, glycocalyx properties and EDD were augmented, and aortic stiffness decreased in old+ECX mice (P<0.05). Old+ECX mice had a more youthful aortic phenotype, demonstrated by lower collagen content and higher elastin content than old control mice (P<0.05). Functional outcomes were repeated in old mice that underwent a diet supplemented solely with HMW-HA (old+HA). Compared to old controls, glycocalyx properties and EDD were augmented, and aortic stiffness was lower in old+HA mice (P<0.05). We did not observe any differences between old+HA and old+ECX mice (P>0.05). Has2 reduction phenocopies age-related arterial dysfunction, while 10 weeks of glycocalyx-targeted therapy that restores the glycocalyx also ameliorates age-related arterial dysfunction. These findings suggest that the glycocalyx may be a viable therapeutic target to ameliorate age-related arterial dysfunction.


Asunto(s)
Arterias , Glicocálix , Animales , Ratones , Aorta , Suplementos Dietéticos , Tamoxifeno
5.
Physiol Rep ; 10(9): e15284, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35561022

RESUMEN

Increased arterial stiffness is a cardiovascular disease risk factor in the setting of advancing age and Western diet (WD) induced obesity. Increases in large artery stiffness, as measured by pulse wave velocity (PWV), occur within 8 weeks of WD feeding in mice. Sirtuin-1 (Sirt1), a NAD-dependent deacetylase, regulates cellular metabolic activity and activation of this protein has been associated with vasoprotection in aged mice. The aim of the study was to elucidate the effect of global Sirt1 overexpression (Sirttg ) on WD-induced arterial stiffening. Sirt1 overexpression did not influence PWV in normal chow (NC) fed mice. However, PWV was higher in wild-type (WT) mice (p < 0.04), but not in Sirttg mice, after 12 weeks of WD and this effect was independent of changes in blood pressure or the passive pressure diameter relation in the carotid artery. Overexpression of Sirt1 was associated with lower collagen and higher elastin mRNA expression in the aorta of WD fed mice (both p < 0.05). Although MMP2 and MMP3 mRNA were both upregulated in WT mice after WD (both p < 0.05), this effect was reversed in Sirttg mice compared to WT mice fed WD (both p < 0.05). Surprisingly, histologically assessed collagen and elastin quality were unchanged in the aortas of WT or Sirttg mice after WD. However, Sirttg mice were protected from WD-induced glucose intolerance, although there was no difference in insulin tolerance between groups. These findings demonstrate a vasoprotective effect of Sirt1 overexpression that limits the increase in arterial stiffness in response to consumption of a WD.


Asunto(s)
Dieta Occidental , Rigidez Vascular , Animales , Aorta/fisiología , Colágeno/metabolismo , Dieta Occidental/efectos adversos , Elastina/metabolismo , Ratones , Ratones Endogámicos C57BL , Análisis de la Onda del Pulso , ARN Mensajero/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Rigidez Vascular/fisiología
6.
Sci Rep ; 11(1): 13815, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34226610

RESUMEN

Growing evidence indicates that prorenin receptor (PRR) is upregulated in collecting duct (CD) of diabetic kidney. Prorenin is secreted by the principal CD cells, and is the natural ligand of the PRR. PRR activation stimulates fibrotic factors, including fibronectin, collagen, and transforming growth factor-ß (TGF-ß) contributing to tubular fibrosis. However, whether high glucose (HG) contributes to this effect is unknown. We tested the hypothesis that HG increases the abundance of PRR at the plasma membrane of the CD cells, thus contributing to the stimulation of downstream fibrotic factors, including TGF-ß, collagen I, and fibronectin. We used streptozotocin (STZ) male Sprague-Dawley rats to induce hyperglycemia for 7 days. At the end of the study, STZ-induced rats showed increased prorenin, renin, and angiotensin (Ang) II in the renal inner medulla and urine, along with augmented downstream fibrotic factors TGF-ß, collagen I, and fibronectin. STZ rats showed upregulation of PRR in the renal medulla and preferential distribution of PRR on the apical aspect of the CD cells. Cultured CD M-1 cells treated with HG (25 mM for 1 h) showed increased PRR in plasma membrane fractions compared to cells treated with normal glucose (5 mM). Increased apical PRR was accompanied by upregulation of TGF-ß, collagen I, and fibronectin, while PRR knockdown prevented these effects. Fluorescence resonance energy transfer experiments in M-1 cells demonstrated augmented prorenin activity during HG conditions. The data indicate HG stimulates profibrotic factors by inducing PRR translocation to the plasma membrane in CD cells, which in perspective, might be a novel mechanism underlying the development of tubulointerstitial fibrosis in diabetes mellitus.


Asunto(s)
Diabetes Mellitus Experimental/genética , Nefropatías Diabéticas/genética , Glucosa/metabolismo , Túbulos Renales Colectores/metabolismo , Receptores de Superficie Celular/genética , Animales , Colágeno/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Fibronectinas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hiperglucemia/patología , Túbulos Renales Colectores/patología , Ratas , Factor de Crecimiento Transformador beta/genética , Receptor de Prorenina
7.
Geroscience ; 43(3): 1331-1347, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33893902

RESUMEN

Both glucose tolerance and adaptive immune function exhibit significant age-related alterations. The influence of the immune system on obesity-associated glucose intolerance is well characterized; however, whether the immune system contributes to age-related glucose intolerance is not as well understood. Here, we report that advancing age results in an increase in T cell infiltration in the epididymal white adipose tissue (eWAT), liver, and skeletal muscle. Subtype analyses show that both CD4+, CD8+ T cells are greater with advancing age in each of these tissues and that aging results in a blunted CD4 to CD8 ratio. Anti-CD3 F(ab')2 fragments depleted CD4+ and CD8+ cells in eWAT, CD4+ cells only in the liver, and did not deplete quadriceps T cells. In old mice, T cells producing both interferon-γ and tumor necrosis factor-α are accumulated in the eWAT and liver, and a greater proportion of skeletal muscle T cells produced interferon-γ. Aging resulted in increased proportion and numbers of T regulatory cells in eWAT, but not in the liver or muscle. Aging also resulted in greater numbers of eWAT and quadriceps CD206- macrophages and eWAT, liver and quadriceps B cells; neither cell type was altered by anti-CD3 treatment. Anti-CD3 treatment improved glucose tolerance in old mice and was accompanied by improved signaling related to liver and skeletal muscle insulin utilization and decreased gluconeogenesis-related gene expression in the liver. Our findings indicate a critical role of the adaptive immune system in the age-related metabolic dysfunction.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Tejido Adiposo Blanco , Animales , Depleción Linfocítica , Ratones , Ratones Endogámicos C57BL
8.
Front Physiol ; 11: 559341, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281610

RESUMEN

In the kidney, the stimulation of renin production by the collecting duct (CD-renin) contributes to the development of hypertension. The CD is a major nephron segment for the synthesis of nitric oxide (NO), and low NO bioavailability in the renal medulla is associated with hypertension. However, it is unknown whether NO regulates renin production in the CD. To test the hypothesis that low intrarenal NO levels stimulate the production of CD-renin, we first examined renin expression in the distal nephron segments of CD-eNOS deficient mice. In these mice, specific CD-renin immunoreactivity was increased compared to wild-type littermates; however, juxtaglomerular (JG) renin was not altered. To further assess the intracellular mechanisms involved, we then treated M-1 cells with either 1 mM L-NAME (L-arginine analog), an inhibitor of NO synthase activity, or 1 mM NONOate, a NO donor. Both treatments increased intracellular renin protein levels in M-1 cells. However, only the inhibition of NOS with L-NAME stimulated renin synthesis and secretion as reflected by the increase in Ren1C transcript and renin protein levels in the extracellular media, respectively. In addition, NONOate induced a fast mobilization of cGMP and intracellular renin accumulation. These response was partially prevented by guanylyl cyclase inhibition with ODQ (1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1]. Accumulation of intracellular renin was blocked by protein kinase G (PKG) and protein kinase C (PKC) inhibitors. Our data indicate that low NO bioavailability increases CD-renin synthesis and secretion, which may contribute to the activation of intrarenal renin angiotensin system.

9.
Aging (Albany NY) ; 12(12): 11314-11324, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32564006

RESUMEN

Advanced age is accompanied by aortic stiffening that is associated with decreased vascular expression of sirtuin-1 (SIRT-1). Interventions that increase SIRT-1 expression also lower age-related aortic stiffness. Therefore, we sought to determine if lifelong SIRT-1 overexpression would attenuate age-related aortic stiffening. Aortic pulse wave velocity (PWV) was assessed from 3-24 months in SIRT-1 transgenic overexpressing (SIRTTG) and wild-type (WT) mice. To determine the role of aortic structural changes on aortic stiffening, histological assessment of aortic wall characteristics was performed. Across the age range (3-24 mo), PWV was 8-17% lower in SIRTTG vs. WT (P<0.05). Moreover, the slope of age-related aortic stiffening was lower in SIRTTG vs. WT (2.1±0.2 vs. 3.8±0.3 cm/sec/mo, respectively). Aortic elastin decreased with advancing age in WT (P<0.05 old vs. young WT), but was maintained in SIRTTG mice (P>0.05). There was an age-related increase in aortic collagen, advanced glycation end products, and calcification in WT (P<0.05 old vs. young WT). However, this did not occur in SIRTTG (P>0.05). These findings indicate that lifelong SIRT-1 overexpression attenuates age-related aortic stiffening. These functional data are complemented by histological assessment, demonstrating that the deleterious changes to the aortic wall that normally occur with advancing age are prevented in SIRTTG mice.


Asunto(s)
Envejecimiento/fisiología , Sirtuina 1/metabolismo , Rigidez Vascular/fisiología , Factores de Edad , Anciano , Animales , Aorta/metabolismo , Elastina/análisis , Elastina/metabolismo , Femenino , Humanos , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Modelos Animales , Estrés Oxidativo/fisiología , Análisis de la Onda del Pulso , Sirtuina 1/genética , Adulto Joven
10.
J Diabetes Complications ; 34(2): 107448, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31761419

RESUMEN

AIM OF THE STUDY: During type 2 diabetes (T2D) and hypertension there is stimulation of renal proximal tubule angiotensinogen (AGT), but whether urinary excretion of AGT (uAGT) is an indicator of glomerular damage or intrarenal RAS activation is unclear. We tested the hypothesis that elevations in uAGT can be detected in the absence of albuminuria in a mouse model of T2D. METHODS: Male C57BL/6 mice (N = 10) were fed a high fat (HFD; 45% Kcal from fat) for 28 weeks, and the metabolic phenotype including body weight, blood pressures, glucose, insulin, ippGTT, HOMA-IR, and cholesterol was examined. In addition, kidney Ang II content and reactive oxygen species (ROS) was measured along with urinary albumin, creatinine, Ang II, and AGT. RESULTS: All parameters consistent with T2D were present in mice after 12-14 weeks on the HFD. Systolic BP increased after 18 weeks in HFD but not NFD mice. Intrarenal ROS and Ang II concentrations were also increased in HFD mice. Remarkably, these changes paralleled the augmentation uAGT excretion (3.66 ±â€¯0.50 vs. 0.92 ±â€¯0.13 ng/mg by week 29; P < 0.01), which occurred in the absence of overt albuminuria. CONCLUSIONS: In HFD-induced T2D mice, increases in uAGT occur in the absence of overt renal injury, indicating that this biomarker accurately detects early intrarenal RAS activation.


Asunto(s)
Angiotensinógeno/orina , Diabetes Mellitus Tipo 2/fisiopatología , Sistema Renina-Angiotensina/fisiología , Albuminuria , Animales , Biomarcadores/orina , Diabetes Mellitus Experimental/etiología , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Experimental/orina , Diabetes Mellitus Tipo 2/orina , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Hipertensión/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/complicaciones
11.
J Appl Physiol (1985) ; 125(6): 1860-1870, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29745797

RESUMEN

Cardiovascular diseases (CVDs) remain the leading causes of death in the United States, and advancing age is a primary risk factor. Impaired endothelium-dependent dilation and increased stiffening of the arteries with aging are independent predictors of CVD. Increased tissue and systemic oxidative stress and inflammation underlie this age-associated arterial dysfunction. Calorie restriction (CR) is the most powerful intervention known to increase life span and improve age-related phenotypes, including arterial dysfunction. However, the translatability of long-term CR to clinical populations is limited, stimulating interest in the pursuit of pharmacological CR mimetics to reproduce the beneficial effects of CR. The energy-sensing pathways, mammalian target of rapamycin, AMPK, and sirtuin-1 have all been implicated in the beneficial effects of CR on longevity and/or physiological function and, as such, have emerged as potential targets for therapeutic intervention as CR mimetics. Although manipulation of each of these pathways has CR-like benefits on arterial function, the magnitude and/or mechanisms can be disparate from that of CR. Nevertheless, targeting these pathways in older individuals may provide some benefits against arterial dysfunction and CVD. The goal of this review is to provide a brief discussion of the mechanisms and pathways underlying age-associated dysfunction in large arteries, explain how these are impacted by CR, and to present the available evidence, suggesting that targets for energy-sensing pathways may act as vascular CR mimetics.


Asunto(s)
Envejecimiento/fisiología , Arterias/fisiología , Restricción Calórica , Enfermedades Cardiovasculares/etiología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Enfermedades Cardiovasculares/prevención & control , Humanos , Estrés Oxidativo , Sirtuina 1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
12.
Am J Physiol Renal Physiol ; 313(3): F781-F795, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28566502

RESUMEN

Guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) plays a critical role in the regulation of blood pressure and fluid volume homeostasis. Mice lacking functional Npr1 (coding for GC-A/NPRA) exhibit hypertension and congestive heart failure. However, the underlying mechanisms remain largely less clear. The objective of the present study was to determine the physiological efficacy and impact of all-trans-retinoic acid (ATRA) and sodium butyrate (NaBu) in ameliorating the renal fibrosis, inflammation, and hypertension in Npr1 gene-disrupted haplotype (1-copy; +/-) mice (50% expression levels of NPRA). Both ATRA and NaBu, either alone or in combination, decreased the elevated levels of renal proinflammatory and profibrotic cytokines and lowered blood pressure in Npr1+/- mice compared with untreated controls. The treatment with ATRA-NaBu facilitated the dissociation of histone deacetylase (HDAC) 1 and 2 from signal transducer and activator of transcription 1 (STAT1) and enhanced its acetylation in the kidneys of Npr1+/- mice. The acetylated STAT1 formed a complex with nuclear factor-κB (NF-κB) p65, thereby inhibiting its DNA-binding activity and downstream proinflammatory and profibrotic signaling cascades. The present results demonstrate that the treatment of the haplotype Npr1+/- mice with ATRA-NaBu significantly lowered blood pressure and reduced the renal inflammation and fibrosis involving the interactive roles of HDAC, NF-κB (p65), and STAT1. The current findings will help in developing the molecular therapeutic targets and new treatment strategies for hypertension and renal dysfunction in humans.


Asunto(s)
Antiinflamatorios/farmacología , Ácido Butírico/farmacología , Haplotipos , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Riñón/efectos de los fármacos , Nefritis/prevención & control , Receptores del Factor Natriurético Atrial/deficiencia , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción ReIA/metabolismo , Tretinoina/farmacología , Acetilación , Animales , Presión Sanguínea/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Predisposición Genética a la Enfermedad , Mediadores de Inflamación/metabolismo , Riñón/enzimología , Riñón/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Nefritis/enzimología , Nefritis/genética , Nefritis/patología , Fenotipo , Receptores del Factor Natriurético Atrial/genética , Transducción de Señal/efectos de los fármacos
13.
Am J Physiol Renal Physiol ; 309(10): F880-8, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26268270

RESUMEN

In contrast to the negative feedback of angiotensin II (ANG II) on juxtaglomerular renin, ANG II stimulates renin in the principal cells of the collecting duct (CD) in rats and mice via ANG II type 1 (AT1R) receptor, independently of blood pressure. In vitro data indicate that CD renin is augmented by AT1R activation through protein kinase C (PKC), but the exact mechanisms are unknown. We hypothesize that ANG II stimulates CD renin synthesis through AT1R via PKC and the subsequent activation of cAMP/PKA/CREB pathway. In M-1 cells, ANG II increased cAMP, renin mRNA (3.5-fold), prorenin, and renin proteins, as well as renin activity in culture media (2-fold). These effects were prevented by PKC inhibition with calphostin C, PKC-α dominant negative, and by PKA inhibition. Forskolin-induced increases in cAMP and renin expression were prevented by calphostin C. PKC inhibition and Ca2+ depletion impaired ANG II-mediated CREB phosphorylation and upregulation of renin. Adenylate cyclase 6 (AC) siRNA remarkably attenuated the ANG II-dependent upregulation of renin mRNA. Physiological activation of AC with vasopressin increased renin expression in M-1 cells. The results suggest that the ANG II-dependent upregulation of renin in the CD depends on PKC-α, which allows the augmentation of cAMP production and activation of PKA/CREB pathway via AC6. This study defines the intracellular signaling pathway involved in the ANG II-mediated stimulation of renin in the CD. This is a novel mechanism responsible for the regulation of local renin-angiotensin system in the distal nephron.


Asunto(s)
Angiotensina II/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína Quinasa C-alfa/metabolismo , Renina/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Ratones , Fosforilación , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/fisiología , Transducción de Señal/fisiología , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...