Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(8): 6623-6637, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38348825

RESUMEN

Cell-free RNAs and extracellular vesicles (EVs) are valuable biomarkers in liquid biopsies, but they are prone to preanalytical variabilities such as nonstandardized centrifugation or ex vivo blood degradation. Herein, we report a high-throughput and label-free inertial microfluidic device (ExoArc) for isolation of platelet-free plasma from blood for RNA and EV analysis. Unlike conventional inertial microfluidic devices widely used for cell sorting, a submicrometer size cutoff (500 nm) was achieved which completely removed all leukocytes, RBCs, platelets, and cellular debris based on differential lateral migration induced by Dean vortices. The single-step operation also reduced platelet-associated miRNAs (∼2-fold) compared to centrifugation. We clinically validated ExoArc for plasma miRNA profiling (39 samples) and identified a 7-miRNA panel that detects non-small cell lung cancer with ∼90% sensitivity. ExoArc was also coupled with size exclusion chromatography (SEC) to isolate EVs within 50 min with ∼10-fold higher yield than ultracentrifugation. As a proof-of-concept for EV-based transcriptomics analysis, we performed miRNA analysis in healthy and type 2 diabetes mellitus (T2DM) subjects (n = 3 per group) by coupling ExoArc and ExoArc+SEC with quantitative polymerase chain reaction (RT-qPCR) assay. Among 293 miRNAs detected, plasmas and EVs showed distinct differentially expressed miRNAs in T2DM subjects. We further demonstrated automated in-line EV sorting from low volume culture media for continuous EV monitoring. Overall, the developed ExoArc offers a convenient centrifugation-free workflow to automate plasma and EV isolation for point-of-care diagnostics and quality control in EV manufacturing.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Neoplasias Pulmonares , MicroARNs , Humanos , MicroARNs/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Microfluídica , Neoplasias Pulmonares/metabolismo , Vesículas Extracelulares/metabolismo
2.
Biomedicines ; 11(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36831044

RESUMEN

Non-small cell lung cancer (NSCLC) constitutes the majority of the lung cancer population and the prognosis is poor. In recent years, immunotherapy has become the standard of care for advanced NSCLC patients as numerous trials demonstrated that immune checkpoint inhibitors (ICI) are more efficacious than conventional chemotherapy. However, only a minority of NSCLC patients benefit from this treatment. Therefore, there is an unmet need for biomarkers that could accurately predict response to immunotherapy. Liquid biopsy allows repeated sampling of blood-based biomarkers in a non-invasive manner for the dynamic monitoring of treatment response. In this review, we summarize the efforts and progress made in the identification of circulating biomarkers that predict immunotherapy benefit for NSCLC patients. We also discuss the challenges with future implementation of circulating biomarkers into clinical practice.

5.
Biochim Biophys Acta Gene Regul Mech ; 1861(5): 519-533, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29481869

RESUMEN

Gene expression is regulated by the interaction of the RNA polymerase with various transcription factors at promoter and enhancer elements. Transcriptome analyses found that many non-protein-coding regions are transcribed to produce long non-coding RNAs and enhancer-associated RNAs. Production of these transcripts is associated with activation of nearby protein-coding genes, and at least in some cases, the transcripts themselves mediate this activation. Non-coding transcripts are also reported from large enhancers or clusters of enhancers. However, not much is known about the function of large transcribed enhancer regions during organismal development. Here we investigated a transcribed 10.6 kb intergenic region located upstream of the C. elegans bed-3 gene. We found that parts of this region exhibit tissue-specific promoter and enhancer activities. Deletion of the region disrupts egg laying, a phenotype also observed in bed-3 mutants, but with the severity correlating with the size of the deletion. This phenotype is not caused by overall reduction in bed-3 expression. Rather, deletions reduce bed-3 expression specifically in the mesoderm lineage. We found that bed-3 has a previously unknown function in the generation of sex myoblast (SM) cells from the M lineage, and deletions cause loss of SM cells leading to loss of vulval muscles required for egg laying. Furthermore, injection of dsRNA targeting non-coding transcripts from this region disrupted egg laying in the wild type but not in RNAi-defective mutants. Therefore, the region upstream of bed-3 is required for robust expression of bed-3 in a specific tissue, and non-coding transcripts may mediate this interaction.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Desarrollo de Músculos/genética , Factores de Transcripción/genética , Transcripción Genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Elementos de Facilitación Genéticos , Músculos/metabolismo , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Largo no Codificante/genética
6.
Proc Natl Acad Sci U S A ; 109(39): 15853-8, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23019370

RESUMEN

Wnt signaling is mediated by three classes of receptors, Frizzled, Ryk, and Ror. In Caenorhabditis elegans, Wnt signaling regulates the anterior/posterior polarity of the P7.p vulval lineage, and mutations in lin-17/Frizzled cause loss or reversal of P7.p lineage polarity. We found that pak-1/Pak (p21-activated kinase), along with putative activators of Pak, nck-1/Nck, and ced-10/Rac, regulates P7.p polarity. Mutations in these genes suppress the polarity defect of lin-17 mutants. Furthermore, mutations in pak-1, nck-1, and ced-10 cause constitutive dauer formation at 27 °C, a phenotype also observed in egl-20/Wnt and cam-1/Ror mutants. In HEK293T cells, Pak1 can antagonize canonical Wnt signaling. Moreover, overexpression of Ror2 leads to phosphorylation of Pak1. Together, these results indicate that Pak interacts with Wnt signaling to regulate tissue polarity and gene expression.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Vía de Señalización Wnt/fisiología , Quinasas p21 Activadas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células HEK293 , Humanos , Células L , Ratones , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Quinasas p21 Activadas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...