Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(12): e0208981, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30543678

RESUMEN

Calcium (Ca2+) is an important ion in physiology and is found both outside and inside cells. The intracellular concentration of Ca2+ is tightly regulated as it is an intracellular signal molecule and can affect a variety of cellular processes. In immune cells Ca2+ has been shown to regulate e.g. gene transcription, cytokine secretion, proliferation and migration. Ca2+ can enter the cytoplasm either from intracellular stores or from outside the cells when Ca2+ permeable ion channels in the plasma membrane open. The Ca2+ release-activated (CRAC) channel is the most prominent Ca2+ ion channel in the plasma membrane. It is formed by ORAI1-3 and the channel is opened by the endoplasmic reticulum Ca2+ sensor proteins stromal interaction molecules (STIM) 1 and 2. Another group of Ca2+ channels in the plasma membrane are the voltage-gated Ca2+ (CaV) channels. We examined if a change in immunological tolerance is accompanied by altered ORAI, STIM and CaV gene expression in peripheral blood mononuclear cells (PBMCs) in pregnant women and in type 1 diabetic individuals. Our results show that in pregnancy and type 1 diabetes ORAI1-3 are up-regulated whereas STIM1 and 2 are down-regulated in pregnancy but only STIM2 in type 1 diabetes. Expression of L-, P/Q-, R- and T-type voltage-gated Ca2+ channels was detected in the PBMCs where the CaV2.3 gene was up-regulated in pregnancy and type 1 diabetes whereas the CaV 2.1 and CaV3.2 genes were up-regulated only in pregnancy and the CaV1.3 gene in type 1 diabetes. The results are consistent with that expression of ORAI, STIM and CaV genes correlate with a shift in immunological status of the individual in health, as during pregnancy, and in the autoimmune disease type 1 diabetes. Whether the changes are in general protective or in type 1 diabetes include some pathogenic components remains to be clarified.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio/genética , Diabetes Mellitus Tipo 1/genética , Regulación de la Expresión Génica , Leucocitos Mononucleares/metabolismo , Adolescente , Adulto , Calcio/metabolismo , Estudios de Casos y Controles , Niño , Preescolar , Diabetes Mellitus Tipo 1/sangre , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adulto Joven
2.
PLoS Pathog ; 14(3): e1006936, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29499056

RESUMEN

Gut immunity is regulated by intricate and dynamic mechanisms to ensure homeostasis despite a constantly changing microbial environment. Several regulatory factors have been described to participate in feedback responses to prevent aberrant immune activity. Little is, however, known about how transcriptional programs are directly tuned to efficiently adapt host gut tissues to the current microbiome. Here we show that the POU/Oct gene nubbin (nub) encodes two transcription factor isoforms, Nub-PB and Nub-PD, which antagonistically regulate immune gene expression in Drosophila. Global transcriptional profiling of adult flies overexpressing Nub-PB in immunocompetent tissues revealed that this form is a strong transcriptional activator of a large set of immune genes. Further genetic analyses showed that Nub-PB is sufficient to drive expression both independently and in conjunction with nuclear factor kappa B (NF-κB), JNK and JAK/STAT pathways. Similar overexpression of Nub-PD did, conversely, repress expression of the same targets. Strikingly, isoform co-overexpression normalized immune gene transcription, suggesting antagonistic activities. RNAi-mediated knockdown of individual nub transcripts in enterocytes confirmed antagonistic regulation by the two isoforms and that both are necessary for normal immune gene transcription in the midgut. Furthermore, enterocyte-specific Nub-PB expression levels had a strong impact on gut bacterial load as well as host lifespan. Overexpression of Nub-PB enhanced bacterial clearance of ingested Erwinia carotovora carotovora 15. Nevertheless, flies quickly succumbed to the infection, suggesting a deleterious immune response. In line with this, prolonged overexpression promoted a proinflammatory signature in the gut with induction of JNK and JAK/STAT pathways, increased apoptosis and stem cell proliferation. These findings highlight a novel regulatory mechanism of host-microbe interactions mediated by antagonistic transcription factor isoforms.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/inmunología , Proteínas de Homeodominio/metabolismo , Homeostasis , Inmunidad Innata/inmunología , Intestinos/inmunología , Factores del Dominio POU/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Intestinos/microbiología , Masculino , FN-kappa B/genética , FN-kappa B/metabolismo , Factores del Dominio POU/genética , Pectobacterium carotovorum/patogenicidad , Isoformas de Proteínas
3.
J Endocrinol ; 229(3): 233-43, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27029472

RESUMEN

Transmembrane protein 18 (TMEM18) is an ill-described, obesity-related gene, but few studies have explored its molecular function. We found single-nucleotide polymorphism data, suggesting that TMEM18 may be involved in the regulation/physiology of metabolic syndrome based on associations with insulin, homeostatic model assessment-ß (HOMAß), triglycerides, and blood sugar. We then found an ortholog in the Drosophila genome, knocked down Drosophila Tmem18 specifically in insulin-producing cells, and tested for its effects on metabolic function. Our results suggest that TMEM18 affects substrate levels through insulin and glucagon signaling, and its downregulation induces a metabolic state resembling type 2 diabetes. This work is the first to experimentally describe the metabolic consequences of TMEM18 knockdown, and further supports its association with obesity.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Glucagón/metabolismo , Insulina/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cuerpo Adiposo/metabolismo , Técnicas de Silenciamiento del Gen , Genes de Insecto , Humanos , Larva/metabolismo , Proteínas de la Membrana/genética , Modelos Biológicos , Obesidad/genética , Obesidad/metabolismo , Polimorfismo de Nucleótido Simple , Transducción de Señal , Especificidad de la Especie
4.
Endocrinology ; 157(6): 2309-21, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27100621

RESUMEN

Phthalate diesters are commonly used as industrial plasticisers, as well as in cosmetics and skin care products, as a result people are constantly exposed to these xenobiotics. Recent epidemiological studies have found a correlation between circulating phthalate levels and type 2 diabetes, whereas animal studies indicate that phthalates are capable of disrupting endocrine signaling. Nonetheless, how phthalates interfere with metabolic function is still unclear. Here, we show that feeding Drosophila males the xenobiotic dibutyl phthalate (DBP) affects conserved insulin- and glucagon-like signaling. We report that raising flies on food containing DBP leads to starvation resistance, increased lipid storage, hyperglycemia, and hyperphagia. We go on to show that the starvation-resistance phenotype can be rescued by overexpression of the glucagon analogue adipokinetic hormone (Akh). Furthermore, although acute DBP exposure in adult flies is able to affect insulin levels, only chronic feeding influences Akh expression. We establish that raising flies on DBP-containing food or feeding adults DBP food affects the expression of homologous genes involved in xenobiotic and lipid metabolism (AHR [Drosophila ss], NR1I2 [Hr96], ABCB1 [MDR50], ABCC3 [MRP], and CYP3A4 [Cyp9f2]). Finally, we determined that the expression of these genes is also influenced by Akh. Our results provide comprehensive evidence that DBP can disrupt metabolism in Drosophila males, by regulating genes involved in glucose, lipid, and xenobiotic metabolism.


Asunto(s)
Dibutil Ftalato/toxicidad , Glucagón/metabolismo , Insulina/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Citocromo P-450 CYP3A/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Contaminantes Ambientales/toxicidad , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Transducción de Señal/efectos de los fármacos , Xenobióticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA