Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1250, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082099

RESUMEN

The ongoing evolution of SARS-CoV-2 into more easily transmissible and infectious variants has provided unprecedented insight into mutations enabling immune escape. Understanding how these mutations affect the dynamics of antibody-antigen interactions is crucial to the development of broadly protective antibodies and vaccines. Here we report the characterization of a potent neutralizing antibody (N3-1) identified from a COVID-19 patient during the first disease wave. Cryogenic electron microscopy revealed a quaternary binding mode that enables direct interactions with all three receptor-binding domains of the spike protein trimer, resulting in extraordinary avidity and potent neutralization of all major variants of concern until the emergence of Omicron. Structure-based rational design of N3-1 mutants improved binding to all Omicron variants but only partially restored neutralization of the conformationally distinct Omicron BA.1. This study provides new insights into immune evasion through changes in spike protein dynamics and highlights considerations for future conformationally biased multivalent vaccine designs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes
2.
Mol Cell ; 81(24): 5099-5111.e8, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34919820

RESUMEN

The SARS-CoV-2 spike protein is a critical component of vaccines and a target for neutralizing monoclonal antibodies (nAbs). Spike is also undergoing immunogenic selection with variants that increase infectivity and partially escape convalescent plasma. Here, we describe Spike Display, a high-throughput platform to rapidly characterize glycosylated spike ectodomains across multiple coronavirus-family proteins. We assayed ∼200 variant SARS-CoV-2 spikes for their expression, ACE2 binding, and recognition by 13 nAbs. An alanine scan of all five N-terminal domain (NTD) loops highlights a public epitope in the N1, N3, and N5 loops recognized by most NTD-binding nAbs. NTD mutations in variants of concern B.1.1.7 (alpha), B.1.351 (beta), B.1.1.28 (gamma), B.1.427/B.1.429 (epsilon), and B.1.617.2 (delta) impact spike expression and escape most NTD-targeting nAbs. Finally, B.1.351 and B.1.1.28 completely escape a potent ACE2 mimic. We anticipate that Spike Display will accelerate antigen design, deep scanning mutagenesis, and antibody epitope mapping for SARS-CoV-2 and other emerging viral threats.


Asunto(s)
Mamíferos/virología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/virología , Línea Celular , Epítopos/genética , Epítopos/inmunología , Células HEK293 , Humanos , Mamíferos/inmunología , Unión Proteica/genética , Unión Proteica/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
3.
Science ; 372(6546): 1108-1112, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947773

RESUMEN

The molecular composition and binding epitopes of the immunoglobulin G (IgG) antibodies that circulate in blood plasma after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are unknown. Proteomic deconvolution of the IgG repertoire to the spike glycoprotein in convalescent subjects revealed that the response is directed predominantly (>80%) against epitopes residing outside the receptor binding domain (RBD). In one subject, just four IgG lineages accounted for 93.5% of the response, including an amino (N)-terminal domain (NTD)-directed antibody that was protective against lethal viral challenge. Genetic, structural, and functional characterization of a multidonor class of "public" antibodies revealed an NTD epitope that is recurrently mutated among emerging SARS-CoV-2 variants of concern. These data show that "public" NTD-directed and other non-RBD plasma antibodies are prevalent and have implications for SARS-CoV-2 protection and antibody escape.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Inmunoglobulina G/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Monoclonales/sangre , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/química , Afinidad de Anticuerpos , COVID-19/prevención & control , Epítopos/inmunología , Humanos , Evasión Inmune , Inmunoglobulina G/sangre , Inmunoglobulina G/química , Cadenas Pesadas de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/inmunología , Ratones , Ratones Endogámicos BALB C , Mutación , Dominios Proteicos , Proteómica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
4.
bioRxiv ; 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33851158

RESUMEN

The ongoing evolution of SARS-CoV-2 into more easily transmissible and infectious variants has sparked concern over the continued effectiveness of existing therapeutic antibodies and vaccines. Hence, together with increased genomic surveillance, methods to rapidly develop and assess effective interventions are critically needed. Here we report the discovery of SARS-CoV-2 neutralizing antibodies isolated from COVID-19 patients using a high-throughput platform. Antibodies were identified from unpaired donor B-cell and serum repertoires using yeast surface display, proteomics, and public light chain screening. Cryo-EM and functional characterization of the antibodies identified N3-1, an antibody that binds avidly (Kd,app = 68 pM) to the receptor binding domain (RBD) of the spike protein and robustly neutralizes the virus in vitro. This antibody likely binds all three RBDs of the trimeric spike protein with a single IgG. Importantly, N3-1 equivalently binds spike proteins from emerging SARS-CoV-2 variants of concern, neutralizes UK variant B.1.1.7, and binds SARS-CoV spike with nanomolar affinity. Taken together, the strategies described herein will prove broadly applicable in interrogating adaptive immunity and developing rapid response biological countermeasures to emerging pathogens.

5.
mBio ; 11(6)2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33127862

RESUMEN

We sequenced the genomes of 5,085 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains causing two coronavirus disease 2019 (COVID-19) disease waves in metropolitan Houston, TX, an ethnically diverse region with 7 million residents. The genomes were from viruses recovered in the earliest recognized phase of the pandemic in Houston and from viruses recovered in an ongoing massive second wave of infections. The virus was originally introduced into Houston many times independently. Virtually all strains in the second wave have a Gly614 amino acid replacement in the spike protein, a polymorphism that has been linked to increased transmission and infectivity. Patients infected with the Gly614 variant strains had significantly higher virus loads in the nasopharynx on initial diagnosis. We found little evidence of a significant relationship between virus genotype and altered virulence, stressing the linkage between disease severity, underlying medical conditions, and host genetics. Some regions of the spike protein-the primary target of global vaccine efforts-are replete with amino acid replacements, perhaps indicating the action of selection. We exploited the genomic data to generate defined single amino acid replacements in the receptor binding domain of spike protein that, importantly, produced decreased recognition by the neutralizing monoclonal antibody CR3022. Our report represents the first analysis of the molecular architecture of SARS-CoV-2 in two infection waves in a major metropolitan region. The findings will help us to understand the origin, composition, and trajectory of future infection waves and the potential effect of the host immune response and therapeutic maneuvers on SARS-CoV-2 evolution.IMPORTANCE There is concern about second and subsequent waves of COVID-19 caused by the SARS-CoV-2 coronavirus occurring in communities globally that had an initial disease wave. Metropolitan Houston, TX, with a population of 7 million, is experiencing a massive second disease wave that began in late May 2020. To understand SARS-CoV-2 molecular population genomic architecture and evolution and the relationship between virus genotypes and patient features, we sequenced the genomes of 5,085 SARS-CoV-2 strains from these two waves. Our report provides the first molecular characterization of SARS-CoV-2 strains causing two distinct COVID-19 disease waves.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Anticuerpos Neutralizantes/inmunología , Secuencia de Bases , Betacoronavirus/inmunología , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , ARN Polimerasa Dependiente de ARN de Coronavirus , Genoma Viral , Genotipo , Humanos , Aprendizaje Automático , Modelos Moleculares , Técnicas de Diagnóstico Molecular , Pandemias , Filogenia , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , SARS-CoV-2 , Análisis de Secuencia de Proteína , Glicoproteína de la Espiga del Coronavirus/inmunología , Texas/epidemiología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
6.
medRxiv ; 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33024977

RESUMEN

We sequenced the genomes of 5,085 SARS-CoV-2 strains causing two COVID-19 disease waves in metropolitan Houston, Texas, an ethnically diverse region with seven million residents. The genomes were from viruses recovered in the earliest recognized phase of the pandemic in Houston, and an ongoing massive second wave of infections. The virus was originally introduced into Houston many times independently. Virtually all strains in the second wave have a Gly614 amino acid replacement in the spike protein, a polymorphism that has been linked to increased transmission and infectivity. Patients infected with the Gly614 variant strains had significantly higher virus loads in the nasopharynx on initial diagnosis. We found little evidence of a significant relationship between virus genotypes and altered virulence, stressing the linkage between disease severity, underlying medical conditions, and host genetics. Some regions of the spike protein - the primary target of global vaccine efforts - are replete with amino acid replacements, perhaps indicating the action of selection. We exploited the genomic data to generate defined single amino acid replacements in the receptor binding domain of spike protein that, importantly, produced decreased recognition by the neutralizing monoclonal antibody CR30022. Our study is the first analysis of the molecular architecture of SARS-CoV-2 in two infection waves in a major metropolitan region. The findings will help us to understand the origin, composition, and trajectory of future infection waves, and the potential effect of the host immune response and therapeutic maneuvers on SARS-CoV-2 evolution.

7.
Immunity ; 52(6): 1022-1038.e7, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32454024

RESUMEN

Class-switched antibodies to double-stranded DNA (dsDNA) are prevalent and pathogenic in systemic lupus erythematosus (SLE), yet mechanisms of their development remain poorly understood. Humans and mice lacking secreted DNase DNASE1L3 develop rapid anti-dsDNA antibody responses and SLE-like disease. We report that anti-DNA responses in Dnase1l3-/- mice require CD40L-mediated T cell help, but proceed independently of germinal center formation via short-lived antibody-forming cells (AFCs) localized to extrafollicular regions. Type I interferon (IFN-I) signaling and IFN-I-producing plasmacytoid dendritic cells (pDCs) facilitate the differentiation of DNA-reactive AFCs in vivo and in vitro and are required for downstream manifestations of autoimmunity. Moreover, the endosomal DNA sensor TLR9 promotes anti-dsDNA responses and SLE-like disease in Dnase1l3-/- mice redundantly with another nucleic acid-sensing receptor, TLR7. These results establish extrafollicular B cell differentiation into short-lived AFCs as a key mechanism of anti-DNA autoreactivity and reveal a major contribution of pDCs, endosomal Toll-like receptors (TLRs), and IFN-I to this pathway.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/metabolismo , Comunicación Celular , ADN/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Interferón Tipo I/metabolismo , Animales , Anticuerpos Antinucleares/inmunología , Autoantígenos/inmunología , Autoinmunidad , Biomarcadores , Ligando de CD40/deficiencia , Comunicación Celular/genética , Comunicación Celular/inmunología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Endodesoxirribonucleasas/deficiencia , Técnica del Anticuerpo Fluorescente , Centro Germinal/inmunología , Centro Germinal/metabolismo , Centro Germinal/patología , Lupus Eritematoso Sistémico/etiología , Lupus Eritematoso Sistémico/metabolismo , Ratones , Ratones Noqueados , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 9/metabolismo
8.
bioRxiv ; 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33398269

RESUMEN

Although humoral immunity is essential for control of SARS-CoV-2, the molecular composition, binding epitopes and effector functions of the immunoglobulin G (IgG) antibodies that circulate in blood plasma following infection are unknown. Proteomic deconvolution of the circulating IgG repertoire (Ig-Seq 1 ) to the spike ectodomain (S-ECD 2 ) in four convalescent study subjects revealed that the plasma response is oligoclonal and directed predominantly (>80%) to S-ECD epitopes that lie outside the receptor binding domain (RBD). When comparing antibodies directed to either the RBD, the N-terminal domain (NTD) or the S2 subunit (S2) in one subject, just four IgG lineages (1 anti-S2, 2 anti-NTD and 1 anti-RBD) accounted for 93.5% of the repertoire. Although the anti-RBD and one of the anti-NTD antibodies were equally potently neutralizing in vitro , we nonetheless found that the anti-NTD antibody was sufficient for protection to lethal viral challenge, either alone or in combination as a cocktail where it dominated the effect of the other plasma antibodies. We identified in vivo protective plasma anti-NTD antibodies in 3/4 subjects analyzed and discovered a shared class of antibodies targeting the NTD that utilize unmutated or near-germline IGHV1-24, the most electronegative IGHV gene in the human genome. Structural analysis revealed that binding to NTD is dominated by interactions with the heavy chain, accounting for 89% of the entire interfacial area, with germline residues uniquely encoded by IGHV1-24 contributing 20% (149 Å 2 ). Together with recent reports of germline IGHV1-24 antibodies isolated by B-cell cloning 3,4 our data reveal a class of shared IgG antibodies that are readily observed in convalescent plasma and underscore the role of NTD-directed antibodies in protection against SARS-CoV-2 infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA