Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
3.
JCI Insight ; 8(22)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37707956

RESUMEN

BACKGROUNDCardiorenal syndrome (CRS) - renal injury during heart failure (HF) - is linked to high morbidity. Whether circulating extracellular vesicles (EVs) and their RNA cargo directly impact its pathogenesis remains unclear.METHODSWe investigated the role of circulating EVs from patients with CRS on renal epithelial/endothelial cells using a microfluidic kidney-on-chip (KOC) model. The small RNA cargo of circulating EVs was regressed against serum creatinine to prioritize subsets of functionally relevant EV-miRNAs and their mRNA targets investigated using in silico pathway analysis, human genetics, and interrogation of expression in the KOC model and in renal tissue. The functional effects of EV-RNAs on kidney epithelial cells were experimentally validated.RESULTSRenal epithelial and endothelial cells in the KOC model exhibited uptake of EVs from patients with HF. HF-CRS EVs led to higher expression of renal injury markers (IL18, LCN2, HAVCR1) relative to non-CRS EVs. A total of 15 EV-miRNAs were associated with creatinine, targeting 1,143 gene targets specifying pathways relevant to renal injury, including TGF-ß and AMPK signaling. We observed directionally consistent changes in the expression of TGF-ß pathway members (BMP6, FST, TIMP3) in the KOC model exposed to CRS EVs, which were validated in epithelial cells treated with corresponding inhibitors and mimics of miRNAs. A similar trend was observed in renal tissue with kidney injury. Mendelian randomization suggested a role for FST in renal function.CONCLUSIONPlasma EVs in patients with CRS elicit adverse transcriptional and phenotypic responses in a KOC model by regulating biologically relevant pathways, suggesting a role for EVs in CRS.TRIAL REGISTRATIONClinicalTrials.gov NCT03345446.FUNDINGAmerican Heart Association (AHA) (SFRN16SFRN31280008); National Heart, Lung, and Blood Institute (1R35HL150807-01); National Center for Advancing Translational Sciences (UH3 TR002878); and AHA (23CDA1045944).


Asunto(s)
Síndrome Cardiorrenal , Vesículas Extracelulares , Insuficiencia Cardíaca , MicroARNs , Humanos , Células Endoteliales/metabolismo , Síndrome Cardiorrenal/metabolismo , Riñón/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Insuficiencia Cardíaca/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
4.
Front Med (Lausanne) ; 10: 1174518, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234239

RESUMEN

Sarcoidosis is an inflammatory granulomatous disease of unknown etiology involving any organ or tissue along with any combination of active sites, even the most silent ones clinically. The unpredictable nature of the sites involved in sarcoidosis dictates the highly variable natural history of the disease and the necessity to cluster cases at diagnosis based on clinical and/or imaging common characteristics in an attempt to classify patients based on their more homogeneous phenotypes, possibly with similar clinical behavior, prognosis, outcome, and therefore with therapeutic requirements. In the course of the disease's history, this attempt relates to the availability of a means of detection of the sites involved, from the Karl Wurm and Guy Scadding's chest x-ray staging through the ACCESS, the WASOG Sarcoidosis Organ Assessment Instruments, and the GenPhenReSa study to the 18F-FDG PET/CT scan phenotyping and far beyond to new technologies and/or the current "omics." The hybrid molecular imaging of the 18F-FDG PET/CT scan, by unveiling the glucose metabolism of inflammatory cells, can identify high sensitivity inflammatory active granulomas, the hallmark of sarcoidosis-even in clinically and physiologically silent sites-and, as recently shown, is successful in identifying an unexpected ordered stratification into four phenotypes: (I) hilar-mediastinal nodal, (II) lungs and hilar-mediastinal nodal, (III) an extended nodal supraclavicular, thoracic, abdominal, inguinal, and (IV) all the above in addition to systemic organs and tissues, which is therefore the ideal phenotyping instrument. During the "omics era," studies could provide significant, distinct, and exclusive insights into sarcoidosis phenotypes linking clinical, laboratory, imaging, and histologic characteristics with molecular signatures. In this context, the personalization of treatment for sarcoidosis patients might have reached its goal.

5.
Sports Med Open ; 9(1): 27, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149504

RESUMEN

Exercise has well-recognized beneficial effects on the whole body. Previous studies suggest that exercise could promote tissue regeneration and repair in various organs. In this review, we have summarized the major effects of exercise on tissue regeneration primarily mediated by stem cells and progenitor cells in skeletal muscle, nervous system, and vascular system. The protective function of exercise-induced stem cell activation under pathological conditions and aging in different organs have also been discussed in detail. Moreover, we have described the primary molecular mechanisms involved in exercise-induced tissue regeneration, including the roles of growth factors, signaling pathways, oxidative stress, metabolic factors, and non-coding RNAs. We have also summarized therapeutic approaches that target crucial signaling pathways and molecules responsible for exercise-induced tissue regeneration, such as IGF1, PI3K, and microRNAs. Collectively, the comprehensive understanding of exercise-induced tissue regeneration will facilitate the discovery of novel drug targets and therapeutic strategies.

6.
medRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865094

RESUMEN

Background: Acute decompensation is associated with increased mortality in heart failure (HF) patients, though the underlying etiology remains unclear. Extracellular vesicles (EVs) and their cargo may mark specific cardiovascular physiologic states. We hypothesized that EV transcriptomic cargo, including long non-coding RNAs (lncRNAs) and mRNAs, is dynamic from the decompensated to recompensated HF state, reflecting molecular pathways relevant to adverse remodeling. Methods: We examined differential RNA expression from circulating plasma extracellular RNA in acute HF patients at hospital admission and discharge alongside healthy controls. We leveraged different exRNA carrier isolation methods, publicly available tissue banks, and single nuclear deconvolution of human cardiac tissue to identify cell and compartment specificity of the topmost significantly differentially expressed targets. EV-derived transcript fragments were prioritized by fold change (-1.5 to + 1.5) and significance (<5% false discovery rate), and their expression in EVs was subsequently validated in 182 additional patients (24 control; 86 HFpEF; 72 HFrEF) by qRT-PCR. We finally examined the regulation of EV-derived lncRNA transcripts in human cardiac cellular stress models. Results: We identified 138 lncRNAs and 147 mRNAs (present mostly as fragments in EVs) differentially expressed between HF and control. Differentially expressed transcripts between HFrEF vs. control were primarily cardiomyocyte derived, while those between HFpEF vs. control originated from multiple organs and different (non-cardiomyocyte) cell types within the myocardium. We validated 5 lncRNAs and 6 mRNAs to differentiate between HF and control. Of those, 4 lncRNAs (AC092656.1, lnc-CALML5-7, LINC00989, RMRP) were altered by decongestion, with their levels independent of weight changes during hospitalization. Further, these 4 lncRNAs dynamically responded to stress in cardiomyocytes and pericytes in vitro , with a directionality mirroring the acute congested state. Conclusion: Circulating EV transcriptome is significantly altered during acute HF, with distinct cell and organ specificity in HFpEF vs. HFrEF consistent with a multi-organ vs. cardiac origin, respectively. Plasma EV-derived lncRNA fragments were more dynamically regulated with acute HF therapy independent of weight change (relative to mRNAs). This dynamicity was further demonstrated with cellular stress in vitro . Prioritizing transcriptional changes in plasma circulating EVs with HF therapy may be a fruitful approach to HF subtype-specific mechanistic discovery. CLINICAL PERSPECTIVE: What is new?: We performed extracellular transcriptomic analysis on the plasma of patients with acute decompensated heart failure (HFrEF and HFpEF) before and after decongestive efforts.Long non-coding RNAs (lncRNAs) within extracellular vesicles (EVs) changed dynamically upon decongestion in concordance with changes within human iPSC-derived cardiomyocytes under stress.In acute decompensated HFrEF, EV RNAs are mainly derived from cardiomyocytes, whereas in HFpEF, EV RNAs appear to have broader, non-cardiomyocyte origins.What are the clinical implications?: Given their concordance between human expression profiles and dynamic in vitro responses, lncRNAs within EVs during acute HF may provide insight into potential therapeutic targets and mechanistically relevant pathways. These findings provide a "liquid biopsy" support for the burgeoning concept of HFpEF as a systemic disorder extending beyond the heart, as opposed to a more cardiac-focused physiology in HFrEF.

7.
Mol Ther Nucleic Acids ; 31: 527-540, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36891498

RESUMEN

Muscle atrophy is debilitating and can be induced by several stressors. Unfortunately, there are no effective pharmacological treatment until now. MicroRNA (miR)-29b is an important target that we identified to be commonly involved in multiple types of muscle atrophy. Although sequence-specific inhibition of miR-29b has been developed, in this study, we report a novel small-molecule miR-29b inhibitor that targets miR-29b hairpin precursor (pre-miR-29b) (Targapremir-29b-066 [TGP-29b-066]) considering both its three-dimensional structure and the thermodynamics of interaction between pre-miR-29b and the small molecule. This novel small-molecule inhibitor has been demonstrated to attenuate muscle atrophy induced by angiotensin II (Ang II), dexamethasone (Dex), and tumor necrosis factor α (TNF-α) in C2C12 myotubes, as evidenced by increase in the diameter of myotube and decrease in the expression of Atrogin-1 and MuRF-1. Moreover, it can also attenuate Ang II-induced muscle atrophy in mice, as evidenced by a similar increase in the diameter of myotube, reduced Atrogin-1 and MuRF-1 expression, AKT-FOXO3A-mTOR signaling activation, and decreased apoptosis and autophagy. In summary, we experimentally identified and demonstrated a novel small-molecule inhibitor of miR-29b that could act as a potential therapeutic agent for muscle atrophy.

8.
Adv Biol (Weinh) ; 7(4): e2200204, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36683183

RESUMEN

It is well known that exercise is beneficial for cardiovascular health. Oxidative stress is the common pathological basis of many cardiovascular diseases. The overproduction of free radicals, both reactive oxygen species and reactive nitrogen species, can lead to redox imbalance and exacerbate oxidative damage to the cardiovascular system. Maintaining redox homeostasis and enhancing anti-oxidative capacity are critical mechanisms by which exercise protects against cardiovascular diseases. Moderate-intensity exercise is an effective means to maintain cardiovascular redox homeostasis. Moderate-intensity exercise reduces the risk of cardiovascular disease by improving mitochondrial function and anti-oxidative capacity. It also attenuates adverse cardiac remodeling and enhances cardiac function. This paper reviews the primary mechanisms of moderate-intensity exercise-mediated redox homeostasis in the cardiovascular system. Exploring the role of exercise-mediated redox homeostasis in the cardiovascular system is of great significance to the prevention and treatment of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Humanos , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/patología , Estrés Oxidativo , Oxidación-Reducción , Sistema Cardiovascular/patología , Homeostasis
10.
J Pharmacol Exp Ther ; 384(1): 52-60, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35609922

RESUMEN

Circular RNAs (circRNAs) are covalently closed RNA produced by back-splicing. CircRNAs have been considered as a type of noncoding RNAs for a long time. However, recent studies have shown that circRNAs can be translated into functional proteins. Proteins specifically encoded by circRNAs have been proved to play important roles in cancer pathology. In this review, we introduce the methods commonly used to identify and validate circRNA translation in detail. We also describe the major mechanisms driving the translation of these circRNAs. In addition, we summarize the main functions of the circRNA-encoded proteins in both physiologic and pathologic conditions. Finally, we discuss the therapeutic potential and challenges in the usage of synthetic translatable circRNAs. This brief review highlights recent discoveries made in this field and the progress of therapy based on translatable circRNAs. SIGNIFICANCE STATEMENT: Understanding the translation of circRNA could facilitate the identification of novel drug targets in various diseases. Moreover, some circRNA encoded proteins were demonstrated to have therapeutic functions in cancer. The application of synthetic circRNAs as carriers to achieve stable protein expression in vitro and in vivo has tremendous therapeutic potential.


Asunto(s)
Neoplasias , ARN Circular , Humanos , ARN Circular/genética , ARN Circular/metabolismo , ARN/genética , Empalme del ARN , Neoplasias/genética
11.
Adv Exp Med Biol ; 1396: 157-176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36454466

RESUMEN

Muscle atrophy is a multifactor syndrome, which not only decreases the patients' quality of life significantly but also increases the morbidity and mortality of patients with chronic diseases. At present, no effective clinical treatments for muscle atrophy except for exercise are available. The emerging field of genome editing is gaining momentum as it has shown great advantage in the treatment of various diseases, including muscle atrophy. In our current review, we systematically evaluate the etiology and related signaling pathways of muscle atrophy and discuss the application of genome editing in the treatment of muscle atrophy.


Asunto(s)
Edición Génica , Calidad de Vida , Humanos , Atrofia Muscular/genética , Atrofia Muscular/terapia , Ejercicio Físico , Movimiento (Física)
12.
J Cardiovasc Transl Res ; 16(1): 51-62, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35921051

RESUMEN

Exercise is a preferred strategy for improving cardiac function, especially for patients with cardiovascular diseases. Increasing evidence indicates that oxidative stress is involved in exercise-induced cardioprotection, while the underlying mechanism remains unclear. Furthermore, the effect of antioxidant supplementation during or post-exercise still exists despite divergences. To explore the effect of oxidative stress and antioxidant supplementation on cardiovascular homeostasis during or post-exercise, we take insights into the progress of exercise-induced oxidative stress, antioxidant supplementation, and cardiovascular homeostasis. In particular, antioxidants such as vitamin C or E, gamma-oryzanol, and other natural antioxidants are discussed concerning regulating exercise-associated oxidative stress. Additionally, our present study reviewed and discussed a meta-analysis of antioxidant supplementation during exercise. Overall, we take an insight into the essential biological adaptations in response to exercise and the effects of antioxidant supplementation on cardiac function, which aid us in giving recommendations on antioxidant supplementation for exercisers and exercised people. A better understanding of these issues will broaden our knowledge of exercise physiology.


Asunto(s)
Antioxidantes , Amigos , Humanos , Antioxidantes/farmacología , Suplementos Dietéticos , Ejercicio Físico/fisiología , Estrés Oxidativo , Homeostasis
13.
Extracell Vesicle ; 22023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38188000

RESUMEN

Extracellular vesicles (EVs) are membrane-bound nanoparticles with different types of cargo released by cells and postulated to mediate functions such as intercellular communications. Recent studies have shown that long non-coding RNAs (lncRNAs) or their fragments are present as cargo within EVs. LncRNAs are a heterogeneous group of RNA species with a length exceeding 200 nucleotides with diverse functions in cells based on their localization. While lncRNAs are known for their important functions in cellular regulation, their presence and role in EVs have only recently been explored. While certain studies have observed EV-lncRNAs to be tissue-and disease-specific, it remains to be determined whether or not this is a global observation. Nonetheless, these molecules have demonstrated promising potential to serve as new diagnostic and prognostic biomarkers. In this review, we critically evaluate the role of EV-derived lncRNAs in several prevalent diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases, with a specific focus on their role as biomarkers.

14.
Aging (Albany NY) ; 14(19): 8110-8136, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36178367

RESUMEN

Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide that bears an enormous healthcare burden and aging is a major contributing factor to CVDs. Functional gene expression network during aging is regulated by mRNAs transcriptionally and by non-coding RNAs epi-transcriptionally. RNA modifications alter the stability and function of both mRNAs and non-coding RNAs and are involved in differentiation, development, and diseases. Here we review major chemical RNA modifications on mRNAs and non-coding RNAs, including N6-adenosine methylation, N1-adenosine methylation, 5-methylcytidine, pseudouridylation, 2' -O-ribose-methylation, and N7-methylguanosine, in the aging process with an emphasis on cardiovascular aging. We also summarize the currently available methods to detect RNA modifications and the bioinformatic tools to study RNA modifications. More importantly, we discussed the specific implication of the RNA modifications on mRNAs and non-coding RNAs in the pathogenesis of aging-associated CVDs, including atherosclerosis, hypertension, coronary heart diseases, congestive heart failure, atrial fibrillation, peripheral artery disease, venous insufficiency, and stroke.


Asunto(s)
Enfermedades Cardiovasculares , ARN Largo no Codificante , Humanos , Enfermedades Cardiovasculares/genética , Ribosa , Envejecimiento/genética , ARN Mensajero , ARN , Adenosina/metabolismo , ARN Largo no Codificante/genética
15.
iScience ; 25(8): 104833, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35937088

RESUMEN

Patients with SARS-CoV-2 infection (COVID-19) risk developing long-term neurologic symptoms after infection. Here, we identify biomarkers associated with neurologic sequelae one year after hospitalization for SARS-CoV-2 infection. SARS-CoV-2-positive patients were followed using post-SARS-CoV-2 online questionnaires and virtual visits. Hospitalized adults from the pre-SARS-CoV-2 era served as historical controls. 40% of hospitalized patients develop neurological sequelae in the year after recovery from acute COVID-19 infection. Age, disease severity, and COVID-19 infection itself was associated with additional risk for neurological sequelae in our cohorts. Glial fibrillary astrocytic protein (GFAP) and neurofilament light chain (NF-L) were significantly elevated in SARS-CoV-2 infection. After adjusting for age, sex, and disease severity, GFAP and NF-L remained significantly associated with longer term neurological symptoms in patients with SARS-CoV-2 infection. GFAP and NF-L warrant exploration as biomarkers for long-term neurologic complications after SARS-CoV-2 infection.

16.
J Nanobiotechnology ; 20(1): 304, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761332

RESUMEN

Muscle atrophy is a frequently observed complication, characterized by the loss of muscle mass and strength, which diminishes the quality of life and survival. No effective therapy except exercise is currently available. In our previous study, repressing miR-29b has been shown to reduce muscle atrophy. In our current study, we have constructed artificially engineered extracellular vesicles for the delivery of CRISPR/Cas9 to target miR-29b (EVs-Cas9-29b). EVs-Cas9-29b has shown a favorable functional effect with respect to miR-29b repression in a specific and rapid manner by gene editing. In in vitro conditions, EVs-Cas9-29b could protect against muscle atrophy induced by dexamethasone (Dex), angiotensin II (AngII), and tumor necrosis factor-alpha (TNF-α). And EVs-Cas9-29b introduced in vivo preserved muscle function in the well-established immobilization and denervation-induced muscle atrophy mice model. Our work demonstrates an engineered extracellular vesicles delivery of the miR-29b editing system, which could be potentially used for muscle atrophy therapy.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Atrofia Muscular , Animales , Sistemas CRISPR-Cas , Ratones , MicroARNs/genética , Atrofia Muscular/genética , Atrofia Muscular/terapia , Factor de Necrosis Tumoral alfa
17.
Aging Cell ; 21(7): e13657, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35718942

RESUMEN

With the aging of the global population, accumulating interest is focused on manipulating the fundamental aging-related signaling pathways to delay the physiological aging process and eventually slow or prevent the appearance or severity of multiple aging-related diseases. Recently, emerging evidence has shown that RNA modifications, which were historically considered infrastructural features of cellular RNAs, are dynamically regulated across most of the RNA species in cells and thereby critically involved in major biological processes, including cellular senescence and aging. In this review, we summarize the current knowledge about RNA modifications and provide a catalog of RNA modifications on different RNA species, including mRNAs, miRNAs, lncRNA, tRNAs, and rRNAs. Most importantly, we focus on the regulation and roles of these RNA modifications in aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, cataracts, osteoporosis, and fertility decline. This would be an important step toward a better understanding of fundamental aging mechanisms and thereby facilitating the development of novel diagnostics and therapeutics for aging-related diseases.


Asunto(s)
Envejecimiento/patología , MicroARNs , ARN Largo no Codificante , Senescencia Celular , MicroARNs/química , ARN Largo no Codificante/química , ARN Mensajero/química
18.
Front Cardiovasc Med ; 9: 896792, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35770215

RESUMEN

Anthracyclines (ANTs) are a class of anticancer drugs widely used in oncology. However, the clinical application of ANTs is limited by their cardiotoxicity. The mechanisms underlying ANTs-induced cardiotoxicity (AIC) are complicated and involve oxidative stress, inflammation, topoisomerase 2ß inhibition, pyroptosis, immunometabolism, autophagy, apoptosis, ferroptosis, etc. Ferroptosis is a new form of regulated cell death (RCD) proposed in 2012, characterized by iron-dependent accumulation of reactive oxygen species (ROS) and lipid peroxidation. An increasing number of studies have found that ferroptosis plays a vital role in the development of AIC. Therefore, we aimed to elaborate on ferroptosis in AIC, especially by doxorubicin (DOX). We first summarize the mechanisms of ferroptosis in terms of oxidation and anti-oxidation systems. Then, we discuss the mechanisms related to ferroptosis caused by DOX, particularly from the perspective of iron metabolism of cardiomyocytes. We also present our research on the prevention and treatment of AIC based on ferroptosis. Finally, we enumerate our views on the development of drugs targeting ferroptosis in this emerging field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA