Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 51(6): 787-803.e5, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31735669

RESUMEN

The use of adult Drosophila melanogaster as a model for hematopoiesis or organismal immunity has been debated. Addressing this question, we identify an extensive reservoir of blood cells (hemocytes) at the respiratory epithelia (tracheal air sacs) of the thorax and head. Lineage tracing and functional analyses demonstrate that the majority of adult hemocytes are phagocytic macrophages (plasmatocytes) from the embryonic lineage that parallels vertebrate tissue macrophages. Surprisingly, we find no sign of adult hemocyte expansion. Instead, hemocytes play a role in relaying an innate immune response to the blood cell reservoir: through Imd signaling and the Jak/Stat pathway ligand Upd3, hemocytes act as sentinels of bacterial infection, inducing expression of the antimicrobial peptide Drosocin in respiratory epithelia and colocalizing fat body domains. Drosocin expression in turn promotes animal survival after infection. Our work identifies a multi-signal relay of organismal humoral immunity, establishing adult Drosophila as model for inter-organ immunity.


Asunto(s)
Células Sanguíneas/metabolismo , Hematopoyesis/fisiología , Macrófagos/metabolismo , Mucosa Respiratoria/metabolismo , Animales , Drosophila/metabolismo , Hemocitos/metabolismo , Inmunidad Celular/inmunología , Inmunidad Innata/inmunología , Quinasas Janus/metabolismo , Factores de Transcripción/metabolismo
2.
Neural Dev ; 13(1): 25, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30466475

RESUMEN

BACKGROUND: Neural stem cells generate all of the neurons and glial cells in the central nervous system, both during development and in the adult to maintain homeostasis. In the Drosophila optic lobe, neuroepithelial cells progress through two transient progenitor states, PI and PII, before transforming into neuroblasts. Here we analyse the role of Notch signalling in the transition from neuroepithelial cells to neuroblasts. RESULTS: We observed dynamic regulation of Notch signalling: strong activity in PI progenitors, low signalling in PII progenitors, and increased activity after neuroblast transformation. Ectopic expression of the Notch ligand Delta induced the formation of ectopic PI progenitors. Interestingly, we show that the E3 ubiquitin ligase, Neuralized, regulates Delta levels and Notch signalling activity at the transition zone. We demonstrate that the proneural transcription factor, Lethal of scute, is essential to induce expression of Neuralized and promote the transition from the PI progenitor to the PII progenitor state. CONCLUSIONS: Our results show dynamic regulation of Notch signalling activity in the transition from neuroepithelial cells to neuroblasts. We propose a model in which Lethal of scute activates Notch signalling in a non-cell autonomous manner by regulating the expression of Neuralized, thereby promoting the progression between different neural stem cell states.


Asunto(s)
Proteínas de Drosophila/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Células-Madre Neurales/citología , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Receptores Notch/genética
3.
Nat Commun ; 8: 15990, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28748922

RESUMEN

An outstanding question in animal development, tissue homeostasis and disease is how cell populations adapt to sensory inputs. During Drosophila larval development, hematopoietic sites are in direct contact with sensory neuron clusters of the peripheral nervous system (PNS), and blood cells (hemocytes) require the PNS for their survival and recruitment to these microenvironments, known as Hematopoietic Pockets. Here we report that Activin-ß, a TGF-ß family ligand, is expressed by sensory neurons of the PNS and regulates the proliferation and adhesion of hemocytes. These hemocyte responses depend on PNS activity, as shown by agonist treatment and transient silencing of sensory neurons. Activin-ß has a key role in this regulation, which is apparent from reporter expression and mutant analyses. This mechanism of local sensory neurons controlling blood cell adaptation invites evolutionary parallels with vertebrate hematopoietic progenitors and the independent myeloid system of tissue macrophages, whose regulation by local microenvironments remain undefined.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Hematopoyesis , Sistema Hematopoyético/metabolismo , Hemocitos/metabolismo , Subunidades beta de Inhibinas/metabolismo , Larva/crecimiento & desarrollo , Células Receptoras Sensoriales/metabolismo , Animales , Carbacol/farmacología , Supervivencia Celular , Microambiente Celular , Agonistas Colinérgicos/farmacología , Proteínas de Drosophila/efectos de los fármacos , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Sistema Hematopoyético/efectos de los fármacos , Hemocitos/efectos de los fármacos , Larva/efectos de los fármacos , Larva/metabolismo , Sistema Nervioso Periférico/efectos de los fármacos , Sistema Nervioso Periférico/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos
4.
Semin Immunol ; 27(6): 357-68, 2015 12.
Artículo en Inglés | MEDLINE | ID: mdl-27117654

RESUMEN

The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell development and immunity. Drosophila is a holometabolous insect, which transitions through a series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable parallels exist between Drosophila and vertebrate macrophages, both in terms of development and function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), making this highly tractable genetic system attractive for studying a variety of questions in macrophage biology. In vertebrates, recent findings revealed that macrophages have two independent origins: self-renewing macrophages, which reside and proliferate in local microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage of the Drosophila model when investigating macrophage lineage specification, maintenance and amplification, and the induction of macrophages and their progenitors by local microenvironments and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for understanding the mechanisms underlying macrophage function and cellular immunity in infection, tissue homeostasis and cancer, throughout development and adult life.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/inmunología , Inmunidad Celular , Macrófagos/inmunología , Animales , Células Sanguíneas/inmunología , Linaje de la Célula , Macrófagos/citología
5.
Neural Dev ; 9: 18, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25074684

RESUMEN

BACKGROUND: During early brain development, the organisation of neural progenitors into a neuroepithelial sheet maintains tissue integrity during growth. Neuroepithelial cohesion and patterning is essential for orderly proliferation and neural fate specification. Neuroepithelia are regionalised by the expression of transcription factors and signalling molecules, resulting in the formation of distinct developmental, and ultimately functional, domains. RESULTS: We have discovered that the Six3/6 family orthologue Optix is an essential regulator of neuroepithelial maintenance and patterning in the Drosophila brain. Six3 and Six6 are required for mammalian eye and forebrain development, and mutations in humans are associated with severe eye and brain malformation. In Drosophila, Optix is expressed in a sharply defined region of the larval optic lobe, and its expression is reciprocal to that of the transcription factor Vsx1. Optix gain- and loss-of-function affects neuroepithelial adhesion, integrity and polarity. We find restricted cell lineage boundaries that correspond to transcription factor expression domains. CONCLUSION: We propose that the optic lobe is compartmentalised by expression of Optix and Vsx1. Our findings provide insight into the spatial patterning of a complex region of the brain, and suggest an evolutionarily conserved principle of visual system development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas de Homeodominio/metabolismo , Células Neuroepiteliales/metabolismo , Lóbulo Óptico de Animales no Mamíferos/embriología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Factores de Transcripción/metabolismo , Animales , Drosophila melanogaster
6.
Exp Hematol ; 42(8): 717-27, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24946019

RESUMEN

Fish, mice, and humans rely on two coexisting myeloid blood cell systems. One is sustained by hematopoietic progenitor cells, which reside in specialized microenvironments (niches) in hematopoietic organs and give rise to cells of the monocyte lineage. The other system corresponds to the independent lineage of self-renewing tissue macrophages, which colonize organs during embryonic development and are maintained during later life by proliferation in local tissue microenvironments. However, little is known about the nature of these microenvironments and their regulation. Moreover, many vertebrate tissues contain a mix of both tissue-resident and monocyte-derived macrophages, posing a challenge to the study of lineage-specific regulatory mechanisms and function. This review highlights how research in the simple model organism Drosophila melanogaster can address many of these outstanding questions in the field. Drawing parallels between hematopoiesis in Drosophila and vertebrates, we illustrate the evolutionary conservation of the two myeloid systems across animal phyla. Much like vertebrates, Drosophila possesses a lineage of self-renewing tissue-resident macrophages, which we refer to as tissue hemocytes, as well as a "definitive" lineage of macrophages that derive from hematopoiesis in the progenitor-based lymph gland. We summarize key findings from Drosophila hematopoiesis that illustrate how local microenvironments, systemic signals, immune challenges, and nervous inputs regulate adaptive responses of tissue-resident macrophages and progenitor-based hematopoiesis to maximize fitness of the animal.


Asunto(s)
Drosophila melanogaster/fisiología , Hematopoyesis , Células Mieloides/fisiología , Adaptación Fisiológica , Animales , Linaje de la Célula , Drosophila melanogaster/embriología , Células Madre Hematopoyéticas/fisiología , Macrófagos/fisiología , Modelos Animales , Nicho de Células Madre
7.
Dev Cell ; 26(1): 101-12, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23792147

RESUMEN

Cell-type-specific transcriptional profiling often requires the isolation of specific cell types from complex tissues. We have developed "TaDa," a technique that enables cell-specific profiling without cell isolation. TaDa permits genome-wide profiling of DNA- or chromatin-binding proteins without cell sorting, fixation, or affinity purification. The method is simple, sensitive, highly reproducible, and transferable to any model system. We show that TaDa can be used to identify transcribed genes in a cell-type-specific manner with considerable temporal precision, enabling the identification of differential gene expression between neuroblasts and the neuroepithelial cells from which they derive. We profile the genome-wide binding of RNA polymerase II in these adjacent, clonally related stem cells within intact Drosophila brains. Our data reveal expression of specific metabolic genes in neuroepithelial cells, but not in neuroblasts, and highlight gene regulatory networks that may pattern neural stem cell fates.


Asunto(s)
Encéfalo/metabolismo , Cromatina/metabolismo , Perfilación de la Expresión Génica/métodos , Células-Madre Neurales/enzimología , ARN Polimerasa II/análisis , Animales , Encéfalo/citología , Separación Celular , Cromatina/genética , Metilación de ADN , Drosophila/enzimología , Drosophila/genética , Redes Reguladoras de Genes , Genes de Insecto , Células-Madre Neurales/citología , Células Neuroepiteliales/citología , Células Neuroepiteliales/enzimología , Unión Proteica , ARN Polimerasa II/genética , ARN Mensajero/análisis , ARN Mensajero/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Transcripción Genética
8.
Methods Mol Biol ; 916: 99-110, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22914935

RESUMEN

In Drosophila, the central nervous system is populated by a set of asymmetrically dividing neural stem cells called neuroblasts. Neuroblasts are derived from epithelial or neuroepithelial precursors, and divide along their apico-basal axes to produce a large apical neuroblast and a smaller basal ganglion mother cell. The ganglion mother cell will divide once again to produce two post-mitotic neurons or glia. In this chapter we outline a method for labeling different types of neural precursors in the Drosophila central nervous system, followed by their extraction and processing for transcriptome analysis. This technique has allowed us to capture and compare the expression profiles of neuroblasts and neuroepithelial cells, resulting in the identification of key genes required for the regulation of self-renewal and differentiation.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/genética , Perfilación de la Expresión Génica/métodos , Células-Madre Neurales/metabolismo , Animales , Encéfalo/citología , Separación Celular , Larva/citología , Larva/genética , Agujas , Células-Madre Neurales/citología , Reacción en Cadena de la Polimerasa , Transcripción Reversa
9.
Fly (Austin) ; 5(3): 237-41, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21502820

RESUMEN

Stem cells proliferate through symmetric division or self-renew through asymmetric division whilst generating differentiating cell types. The balance between symmetric and asymmetric division requires tight control to either expand a stem cell pool or to generate cell diversity. In the Drosophila optic lobe, symmetrically dividing neuroepithelial cells transform into asymmetrically dividing neuroblasts. The switch from neuroepithelial cells to neuroblasts is triggered by a proneural wave that sweeps across the neuroepithelium. Here we review recent findings showing that the orchestrated action of the Notch, EGFR, Fat-Hippo, and JAK/STAT signalling pathways controls the progression of the proneural wave and the sequential transition from symmetric to asymmetric division. The neuroepithelial to neuroblast transition in the optic lobe bears many similarities to the switch from neuroepithelial cell to radial glial cell in the developing mammalian cerebral cortex. The Notch signalling pathway has a similar role in the transition from proliferating to differentiating stem cell pools in the developing vertebrate retina and in the neural tube. Therefore, findings in the Drosophila optic lobe provide insights into the transitions between proliferative and differentiative division in the stem cell pools of higher organisms.


Asunto(s)
División Celular , Drosophila/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Lóbulo Óptico de Animales no Mamíferos/crecimiento & desarrollo , Animales , Diferenciación Celular , Drosophila/citología , Lóbulo Óptico de Animales no Mamíferos/citología , Transducción de Señal
10.
Development ; 137(18): 2981-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20685734

RESUMEN

The proper balance between symmetric and asymmetric stem cell division is crucial both to maintain a population of stem cells and to prevent tumorous overgrowth. Neural stem cells in the Drosophila optic lobe originate within a polarised neuroepithelium, where they divide symmetrically. Neuroepithelial cells are transformed into asymmetrically dividing neuroblasts in a precisely regulated fashion. This cell fate transition is highly reminiscent of the switch from neuroepithelial cells to radial glial cells in the developing mammalian cerebral cortex. To identify the molecules that mediate the transition, we microdissected neuroepithelial cells and compared their transcriptional profile with similarly obtained optic lobe neuroblasts. We find genes encoding members of the Notch pathway expressed in neuroepithelial cells. We show that Notch mutant clones are extruded from the neuroepithelium and undergo premature neurogenesis. A wave of proneural gene expression is thought to regulate the timing of the transition from neuroepithelium to neuroblast. We show that the proneural wave transiently suppresses Notch activity in neuroepithelial cells, and that inhibition of Notch triggers the switch from symmetric, proliferative division, to asymmetric, differentiative division.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Neuronas/metabolismo , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Receptores Notch/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular , División Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Mutación , Receptores Notch/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...