Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 21(1): 367-374, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33347293

RESUMEN

Mie-resonant dielectric metasurfaces are excellent candidates for both fundamental studies related to light-matter interactions and for numerous applications ranging from holography to sensing to nonlinear optics. To date, however, most applications using Mie metasurfaces utilize only weak light-matter interaction. Here, we go beyond the weak coupling regime and demonstrate for the first time strong polaritonic coupling between Mie photonic modes and intersubband (ISB) transitions in semiconductor heterostructures. Furthermore, along with demonstrating ISB polaritons with Rabi splitting as large as 10%, we also demonstrate the ability to tailor the strength of strong coupling by engineering either the semiconductor heterostructure or the photonic mode of the resonators. Unlike previous plasmonic-based works, our new all-dielectric metasurface approach to generate ISB polaritons is free from ohmic losses and has high optical damage thresholds, thereby making it ideal for creating novel and compact mid-infrared light sources based on nonlinear optics.

2.
Opt Express ; 28(8): 10836-10846, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32403606

RESUMEN

A complementary metal oxide semiconductor (CMOS) compatible fabrication method for creating three-dimensional (3D) meta-films is presented. In contrast to metasurfaces, meta-films possess structural variation throughout the thickness of the film and can possess a sub-wavelength scale structure in all three dimensions. Here we use this approach to create 2D arrays of cubic silicon nitride unit cells with plasmonic inclusions of elliptical metallic disks in horizontal and vertical orientations with lateral array-dimensions on the order of millimeters. Fourier transform infrared (FTIR) spectroscopy is used to measure the infrared transmission of meta-films with either horizontally or vertically oriented ellipses with varying eccentricity. Shape effects due to the ellipse eccentricity, as well as localized surface plasmon resonance (LSPR) effects due to the effective plasmonic wavelength are observed in the scattering response. The structures were modeled using rigorous coupled wave analysis (RCWA), finite difference time domain (Lumerical), and frequency domain finite element (COMSOL). The silicon nitride support structure possesses a complex in-plane photonic crystal slab band structure due to the periodicity of the unit cells. We show that adjustments to the physical dimensions of the ellipses can be used to control the coupling to this band structure. The horizontally oriented ellipses show narrow, distinct plasmonic resonances while the vertically oriented ellipses possess broader resonances, with lower overall transmission amplitude for a given ellipse geometry. We attribute this difference in resonance behavior to retardation effects. The ability to couple photonic slab modes with plasmonic inclusions enables a richer space of optical functionality for design of metamaterial-inspired optical components.

3.
Nat Commun ; 10(1): 1625, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30967546

RESUMEN

The measurement of minority carrier lifetimes is vital to determining the material quality and operational bandwidth of a broad range of optoelectronic devices. Typically, these measurements are made by recording the temporal decay of a carrier-concentration-dependent material property following pulsed optical excitation. Such approaches require some combination of efficient emission from the material under test, specialized collection optics, large sample areas, spatially uniform excitation, and/or the fabrication of ohmic contacts, depending on the technique used. In contrast, here we introduce a technique that provides electrical readout of minority carrier lifetimes using a passive microwave resonator circuit. We demonstrate >105 improvement in sensitivity, compared with traditional photoemission decay experiments and the ability to measure carrier dynamics in micron-scale volumes, much smaller than is possible with other techniques. The approach presented is applicable to a wide range of 2D, micro-, or nano-scaled materials, as well as weak emitters or non-radiative materials.

4.
Nat Commun ; 10(1): 365, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30664649

RESUMEN

Wnt-induced ß-catenin-mediated transcription is a driving force for stem cell self-renewal during adult tissue homeostasis. Enhanced Wnt receptor expression due to mutational inactivation of the ubiquitin ligases RNF43/ZNRF3 recently emerged as a leading cause for cancer development. Consequently, targeting canonical Wnt receptors such as LRP5/6 holds great promise for treatment of such cancer subsets. Here, we employ CIS display technology to identify single-domain antibody fragments (VHH) that bind the LRP6 P3E3P4E4 region with nanomolar affinity and strongly inhibit Wnt3/3a-induced ß-catenin-mediated transcription in cells, while leaving Wnt1 responses unaffected. Structural analysis reveal that individual VHHs variably employ divergent antigen-binding regions to bind a similar surface in the third ß-propeller of LRP5/6, sterically interfering with Wnt3/3a binding. Importantly, anti-LRP5/6 VHHs block the growth of Wnt-hypersensitive Rnf43/Znrf3-mutant intestinal organoids through stem cell exhaustion and collective terminal differentiation. Thus, VHH-mediated targeting of LRP5/6 provides a promising differentiation-inducing strategy for treatment of Wnt-hypersensitive tumors.


Asunto(s)
Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/química , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/química , Organoides/efectos de los fármacos , Anticuerpos de Dominio Único/química , Células Madre/efectos de los fármacos , Proteína Wnt3A/genética , Animales , Sitios de Unión , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Cristalografía por Rayos X , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Intestino Delgado/citología , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/antagonistas & inhibidores , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/antagonistas & inhibidores , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Modelos Moleculares , Organoides/citología , Organoides/metabolismo , Unión Proteica , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Células Madre/citología , Células Madre/metabolismo , Transcripción Genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Wnt3A/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
5.
Opt Express ; 26(7): 8532-8541, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29715819

RESUMEN

We experimentally demonstrated an actively tunable optical filter that controls the amplitude of reflected long-wave-infrared light in two separate spectral regions concurrently. Our device exploits the dependence of the excitation energy of plasmons in a continuous and unpatterned sheet of graphene on the Fermi-level, which can be controlled via conventional electrostatic gating. The filter enables simultaneous modification of two distinct spectral bands whose positions are dictated by the device geometry and graphene plasmon dispersion. Within these bands, the reflected amplitude can be varied by over 15% and resonance positions can be shifted by over 90 cm-1. Electromagnetic simulations verify that tuning arises through coupling of incident light to graphene plasmons by a grating structure. Importantly, the tunable range is determined by a combination of graphene properties, device structure, and the surrounding dielectrics, which dictate the plasmon dispersion. Thus, the underlying design shown here is applicable across a broad range of infrared frequencies.

6.
Sci Rep ; 7(1): 14651, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29116105

RESUMEN

A sensitive optical detector is presented based on a deeply depleted graphene-insulator-semiconducting (D2GIS) junction, which offers the possibility of simultaneously leveraging the advantages of both charge integration and localized amplification. Direct read-out and built-in amplification are accomplished via photogating of a graphene field-effect transistor (GFET) by carriers generated within a deeply depleted low-doped silicon substrate. Analogous to a depleted metal-oxide-semiconducting junction, photo-generated charge collects in the potential well that forms at the semiconductor/insulator interface and induces charges of opposite polarity within the graphene film modifying its conductivity. This device enables simultaneous photo-induced charge integration with continuous "on detector" readout through use of graphene. The resulting devices exhibit responsivities as high as 2,500 A/W (25,000 S/W) for visible wavelengths and a dynamic range of 30 dB. As both the graphene and device principles are transferrable to arbitrary semiconductor absorbers, D2GIS devices offer a high-performance paradigm for imaging across the electromagnetic spectrum.

7.
Opt Express ; 25(11): 12400-12408, 2017 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-28786595

RESUMEN

We have examined graphene absorption in a range of graphene-based infrared devices that combine either monolayer or bilayer graphene with three different gate dielectrics. Electromagnetic simulations show that the optical absorption in graphene in these devices, an important factor in a functional graphene-based detector, is strongly dielectric-dependent. These simulations reveal that plasmonic excitation in graphene can significantly influence the percentage of light absorbed in the entire device, as well as the graphene layer itself, with graphene absorption exceeding 25% in regions where plasmonic excitation occurs. Notably, the dielectric environment of graphene has a dramatic influence on the strength and wavelength range over which the plasmons can be excited, making dielectric choice paramount to final detector tunability and sensitivity.

8.
Nano Lett ; 17(9): 5285-5290, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28805397

RESUMEN

We investigated phonon-polaritons in hexagonal boron nitride-a naturally hyperbolic van der Waals material-by means of the scattering-type scanning near-field optical microscopy. Real-space nanoimages we have obtained detail how the polaritons are launched when the light incident on a thin hexagonal boron nitride slab is scattered by various intrinsic and extrinsic inhomogeneities, including sample edges, metallic nanodisks deposited on its top surface, random defects, and surface impurities. The scanned tip of the near-field microscope is itself a polariton launcher whose efficiency proves to be superior to all the other types of polariton launchers we studied. Our work may inform future development of polaritonic nanodevices as well as fundamental studies of collective modes in van der Waals materials.

9.
Opt Lett ; 42(14): 2850-2853, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28708185

RESUMEN

The visibility of monolayer graphene is dependent on its surrounding dielectric environment and the presence of any contamination associated with 2D layer transfer. Here, the optical contrast of residually contaminated monolayer graphene encased within a range of dielectric stacks characteristic of realistic devices is examined, highlighting the utility of optical microscopy for a graphene assessment, both during and after lithographic processing. Practically, chemical vapor deposited graphene is encapsulated in dielectric stacks of varying thicknesses of SiO2. Optical contrast is then measured and compared to predictions of a multilayer model. Experimentally measured contrast is in close agreement with simulation only when contamination is included.

10.
Sci Rep ; 8: 45873, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28374842

RESUMEN

Dynamic wavelength tunability has long been the holy grail of photodetector technology. Because of its atomic thickness and unique properties, graphene opens up new paradigms to realize this concept, but so far this has been elusive experimentally. Here we employ detailed quantum transport modeling of photocurrent in graphene field-effect transistors (including realistic electromagnetic fields) to show that wavelength tunability is possible by dynamically changing the gate voltage. We reveal the phenomena that govern the behavior of this type of device and show significant departure from the simple expectations based on vertical transitions. We find strong focusing of the electromagnetic fields at the contact edges over the same length scale as the band-bending. Both of these spatially-varying potentials lead to an enhancement of non-vertical optical transitions, which dominate even in the absence of phonon or impurity scattering. We also show that the vanishing density of states near the Dirac point leads to contact blocking and a gate-dependent modulation of the photocurrent. Several of the effects discussed here should be applicable to a broad range of one- and two-dimensional materials and devices.

11.
ChemMedChem ; 11(8): 928-39, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-26553526

RESUMEN

The modulation of protein-protein interactions (PPIs) is emerging as a highly promising tool to fight diseases. However, whereas an increasing number of compounds are able to disrupt peptide-mediated PPIs efficiently, the inhibition of domain-domain PPIs appears to be much more challenging. Herein, we report our results related to the interaction between vascular endothelial growth factor (VEGF) and its receptor (VEGFR). The VEGF-VEGFR interaction is a typical domain-domain PPI that is highly relevant for the treatment of cancer and some retinopathies. Our final goal was to identify ligands able to bind VEGF at the region used by the growth factor to interact with its receptor. We undertook an extensive study, combining a variety of experimental approaches, including NMR-spectroscopy-based screening of small organic fragments, peptide libraries, and medicinal plant extracts. The key feature of the successful ligands that emerged from this study was their capacity to expose hydrophobic functional groups able to interact with the hydrophobic hot spots at the interacting VEGF surface patch.


Asunto(s)
Productos Biológicos/farmacología , Oligopéptidos/farmacología , Fragmentos de Péptidos/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Sitios de Unión/efectos de los fármacos , Productos Biológicos/síntesis química , Productos Biológicos/química , Relación Dosis-Respuesta a Droga , Humanos , Ligandos , Modelos Moleculares , Oligopéptidos/síntesis química , Oligopéptidos/química , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Biblioteca de Péptidos , Unión Proteica/efectos de los fármacos , Receptores de Factores de Crecimiento Endotelial Vascular/química , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Relación Estructura-Actividad , Factor A de Crecimiento Endotelial Vascular/química
12.
Nano Lett ; 16(2): 1050-5, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26690855

RESUMEN

Active, widely tunable optical materials have enabled rapid advances in photonics and optoelectronics, especially in the emerging field of meta-devices. Here, we demonstrate that spatially selective defect engineering on the nanometer scale can transform phase-transition materials into optical metasurfaces. Using ion irradiation through nanometer-scale masks, we selectively defect-engineered the insulator-metal transition of vanadium dioxide, a prototypical correlated phase-transition material whose optical properties change dramatically depending on its state. Using this robust technique, we demonstrated several optical metasurfaces, including tunable absorbers with artificially induced phase coexistence and tunable polarizers based on thermally triggered dichroism. Spatially selective nanoscale defect engineering represents a new paradigm for active photonic structures and devices.

13.
ACS Nano ; 9(8): 7968-75, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26223158

RESUMEN

Scattering scanning near-field optical microscopy (s-SNOM) has emerged as a powerful nanoscale spectroscopic tool capable of characterizing individual biomacromolecules and molecular materials. However, applications of scattering-based near-field techniques in the infrared (IR) to native biosystems still await a solution of how to implement the required aqueous environment. In this work, we demonstrate an IR-compatible liquid cell architecture that enables near-field imaging and nanospectroscopy by taking advantage of the unique properties of graphene. Large-area graphene acts as an impermeable monolayer barrier that allows for nano-IR inspection of underlying molecular materials in liquid. Here, we use s-SNOM to investigate the tobacco mosaic virus (TMV) in water underneath graphene. We resolve individual virus particles and register the amide I and II bands of TMV at ca. 1520 and 1660 cm(-1), respectively, using nanoscale Fourier transform infrared spectroscopy (nano-FTIR). We verify the presence of water in the graphene liquid cell by identifying a spectral feature associated with water absorption at 1610 cm(-1).


Asunto(s)
Grafito/química , Nanotecnología/instrumentación , Espectroscopía Infrarroja por Transformada de Fourier/instrumentación , Nanotecnología/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Virus del Mosaico del Tabaco/ultraestructura , Agua/química
14.
Nano Lett ; 15(8): 4859-64, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26181908

RESUMEN

We characterized plasmon propagation in graphene on thin films of the high-κ dielectric PbZr0.3Ti0.7O3 (PZT). Significant modulation (up to ±75%) of the plasmon wavelength was achieved with application of ultrasmall voltages (< ±1 V) across PZT. Analysis of the observed plasmonic fringes at the graphene edge indicates that carriers in graphene on PZT behave as noninteracting Dirac Fermions approximated by a semiclassical Drude response, which may be attributed to strong dielectric screening at the graphene/PZT interface. Additionally, significant plasmon scattering occurs at the grain boundaries of PZT from topographic and/or polarization induced graphene conductivity variation in the interior of graphene, reducing the overall plasmon propagation length. Lastly, through application of 2 V across PZT, we demonstrate the capability to persistently modify the plasmonic response of graphene through transient voltage application.

15.
Front Chem ; 3: 69, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26734602

RESUMEN

Peptides are important natural molecules that possess functions as diverse as antibiotics, toxins, venoms and hormones, for example. However, whilst these peptides have useful properties, there are many targets and pathways that are not addressed through the activities of natural peptidic compounds. In these circumstances, directed evolution techniques, such as phage display, have been developed to sample the diverse chemical and structural repertoire of small peptides for useful means. In this review, we consider recent concepts that relate peptide structure to drug-like attributes and how these are incorporated within display technologies to deliver peptides de novo with valuable pharmaceutical properties.

16.
Nano Lett ; 14(2): 894-900, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24479682

RESUMEN

Pump-probe spectroscopy is central for exploring ultrafast dynamics of fundamental excitations, collective modes, and energy transfer processes. Typically carried out using conventional diffraction-limited optics, pump-probe experiments inherently average over local chemical, compositional, and electronic inhomogeneities. Here, we circumvent this deficiency and introduce pump-probe infrared spectroscopy with ∼ 20 nm spatial resolution, far below the diffraction limit, which is accomplished using a scattering scanning near-field optical microscope (s-SNOM). This technique allows us to investigate exfoliated graphene single-layers on SiO2 at technologically significant mid-infrared (MIR) frequencies where the local optical conductivity becomes experimentally accessible through the excitation of surface plasmons via the s-SNOM tip. Optical pumping at near-infrared (NIR) frequencies prompts distinct changes in the plasmonic behavior on 200 fs time scales. The origin of the pump-induced, enhanced plasmonic response is identified as an increase in the effective electron temperature up to several thousand Kelvin, as deduced directly from the Drude weight associated with the plasmonic resonances.

17.
PLoS One ; 8(3): e58571, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23516512

RESUMEN

Fragment-based drug discovery is widely applied both in industrial and in academic screening programs. Several screening techniques rely on NMR to detect binding of a fragment to a target. NMR-based methods are among the most sensitive techniques and have the further advantage of yielding a low rate of false positives and negatives. However, NMR is intrinsically slower than other screening techniques; thus, to increase throughput in NMR-based screening, researchers often assay mixtures of fragments, rather than single fragments. Herein we present a fast and straightforward computer-aided method to design mixtures of fragments taken from a library that have minimized NMR signal overlap. This approach enables direct identification of one or several active fragments without the need for deconvolution. Our approach entails encoding of NMR spectra into a computer-readable format that we call a fingerprint, and minimizing the global signal overlap through a Monte Carlo algorithm. The scoring function used favors a homogenous distribution of the global signal overlap. The method does not require additional experimental work: the only data required are NMR spectra, which are generally recorded for each compound as a quality control measure before its insertion into the library.


Asunto(s)
Diseño Asistido por Computadora , Evaluación Preclínica de Medicamentos/métodos , Algoritmos , Imagen por Resonancia Magnética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Temperatura , Interfaz Usuario-Computador
18.
Methods Mol Biol ; 831: 233-59, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22167678

RESUMEN

Nuclear magnetic resonance (NMR) has evolved into a powerful tool for characterizing protein-ligand interactions in solution under near physiological conditions. It is now frequently harnessed to assess the affinity and specificity of interactions; to identify binding epitopes on proteins and ligands; and to characterize the structural rearrangements induced by binding.The first section of this chapter provides a general overview of the NMR study of protein-ligand interactions. The section is divided according to two main categories of experiments: those based on observing protein signals and those based on observing ligand signals. The next section explains two case studies performed in the authors' laboratory. The first of these deals with the interaction between vascular endothelial growth factor and a peptidic ligand, and includes a detailed protocol of chemical shift perturbation experiments. The second one reports on the interaction between prolyl oligopeptidase and a small molecule as monitored by ligand saturation transfer difference (STD), and illustrates how NMR can be used to confirm binding and to identify the binding epitope of a ligand.


Asunto(s)
Ligandos , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/metabolismo , Flavonoides/metabolismo , Péptidos/metabolismo , Prolil Oligopeptidasas , Unión Proteica , Serina Endopeptidasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Biopolymers ; 94(6): 689-700, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20564038

RESUMEN

Protein-protein interactions comprise of collection of molecular recognition events that take place at protein surfaces. A better understanding of the mechanism behind these interactions would provide deeper insight into the nature of many diseases, caused by the malfunction of protein networks, and contribute to design of molecules for efficient modulating of these interactions. One major factor in molecular recognition mechanism is interaction of reacting species with aqueous media. Thus, comparative study of noncovalent complex behavior in solution and gas phase can provide valuable information about the role of the solvent. Here examined interactions of vascular endothelial growth factor (VEGF) protein with five peptidic ligands of the same molecular weight but with different affinities. Interactions of VEGF with ligands in solution were studied by ITC and NMR, and K(D)s were determined. Gas phase stability was addressed using CID-MS approach. The energy transfer model was taken and adapted for the calculation of binding energy. Peptides were ranked on the basis of both solution and gas phase affinity to VEGF. The results indicate that the ranking of peptides in terms of affinity in solution is reversed compared with the gas phase ranking. This observation opens up a vast field for the future study of the system, and the determination and characterization of factors, responsible for the change of stability of noncovalent protein-ligand complexes upon complete or partial removal of the solvent.


Asunto(s)
Péptidos/química , Factor A de Crecimiento Endotelial Vascular/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Ligandos , Resonancia Magnética Nuclear Biomolecular/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...