Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Int Soc Sports Nutr ; 20(1): 2178858, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36843067

RESUMEN

BACKGROUND: Carbohydrate (CHO) and carbohydrate-protein co-ingestion (CHO-P) have been shown to be equally effective for enhancing glycogen resynthesis and subsequent same-day performance when CHO intake is suboptimal (≤0.8 g/kg). Few studies have specifically examined the effect of isocaloric CHO vs CHO-P consumption on subsequent high-intensity aerobic performance with limited time to recover (≤2 hours) in masters class endurance athletes. METHODS: This was a randomized, double-blind between-subject design. Twenty-two male masters class endurance athletes (age 49.1 ± 6.9 years; height 175.8 ± 4.8 cm; body mass 80.7 ± 8.6 kg; body fat (%) 19.1 ± 5.8; VO2peak 48.6 ± 6.7 ml·kg·min-1) were assigned to consume one of three beverages during a 2-hour recovery period: Placebo (PLA; electrolytes and water), CHO (1.2 g/kg bm), or CHO-P (0.8 g/kg bm CHO + 0.4 g/kg bm PRO). All beverages were standardized to one liter (~32 oz.) of total fluid volume regardless of the treatment group. During Visit #1, participants completed graded exercise testing on a cycle ergometer to determine VO2peak and peak power output (PPO, watts). Visit #2 consisted of familiarization with the high-intensity protocol including 5 × 4 min intervals at 70-80% of PPO with 2 min of active recovery at 50 W, followed by a time to exhaustion (TTE) test at 90% PPO. During Visit#3, the same high-intensity interval protocol with TTE was conducted pre-and post-beverage consumption. RESULTS: A one-way ANCOVA indicated a significant difference among the group means for the posttest TTE (F2,18 = 6.702, p = .007, ƞ2 = .427) values after adjusting for the pretest differences. TTE performance in the second exercise bout improved for the CHO (295.48 ± 24.90) and CHO-P (255.08 ± 25.07 sec) groups. The water and electrolyte solution was not effective in restoring TTE performance in the PLA group (171.13 ± 23.71 sec). CONCLUSIONS: Both CHO and CHO-P effectively promoted an increase in TTE performance with limited time to recover in this sample of masters class endurance athletes. Water and electrolytes alone were not effective for restoring endurance capacity during the second bout of exhaustive exercise.


Asunto(s)
Carbohidratos de la Dieta , Resistencia Física , Humanos , Masculino , Adulto , Persona de Mediana Edad , Ejercicio Físico , Atletas , Poliésteres/farmacología
2.
J Strength Cond Res ; 35(6): 1527-1534, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34027919

RESUMEN

ABSTRACT: Herring, CH, Goldstein, ER, and Fukuda, DH. Use of tensiomyography in evaluating sex-based differences in resistance-trained individuals after plyometric and isometric midthigh pull postactivation potentiation protocols. J Strength Cond Res 35(6): 1527-1534, 2021-The purposes of this study were to determine if there are sex-based differences in muscular contractile properties as measured by tensiomyography (TMG) and to determine if plyometrics or the isometric midthigh pull are effective methods of eliciting postactivation potentiation (PAP). Thirty strong, resistance-trained men (n = 15) and women (n = 15) underwent 3 testing days consisting of a PAP or control protocol, and pre-TMG and post-TMG and performance testing. Contractile properties from TMG were assessed in the gastrocnemius medial head (GMH), gluteus maximus (GM), rectus femoris (RF), and biceps femoris (BF). Performance testing included countermovement jumps (CMJs) and 30-m sprints. A time × sex interaction was found for GM delay time with women primarily influencing changes (mean difference = 2.74 ms) rather than men (mean difference = 1.32 ms). Main effects for time revealed an increase in GMH velocity of contraction (+0.004 mm·ms-1) and reductions in GM contraction time (-2.85 ms), GM delay time (-2.03 ms), RF delay time (-0.65 ms), CMJs (-2.74 cm), and 30-m time (0.05 seconds). Main effects for sex revealed greater values in women for GM contraction time (+15.50 ms), GM delay time (+6.65 ms), RF delay time (+2.26 ms), BF contraction time (+8.44 ms), BF delay time (+4.07 ms), BF maximal displacement (+2.27 mm), and 30-m time (+0.67 seconds), and lower values in women for GM velocity of contraction (-0.039 mm·ms-1) and CMJs (-13.46 cm).These findings may help practitioners optimize performance through enhanced assessments for injury risk, targeting specific muscles for training, and by selecting proper CAs and rest periods when using PAP.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Nalgas , Femenino , Humanos , Masculino , Fuerza Muscular , Músculo Cuádriceps , Muslo
3.
J Int Soc Sports Nutr ; 18(1): 1, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33388079

RESUMEN

Following critical evaluation of the available literature to date, The International Society of Sports Nutrition (ISSN) position regarding caffeine intake is as follows: 1. Supplementation with caffeine has been shown to acutely enhance various aspects of exercise performance in many but not all studies. Small to moderate benefits of caffeine use include, but are not limited to: muscular endurance, movement velocity and muscular strength, sprinting, jumping, and throwing performance, as well as a wide range of aerobic and anaerobic sport-specific actions. 2. Aerobic endurance appears to be the form of exercise with the most consistent moderate-to-large benefits from caffeine use, although the magnitude of its effects differs between individuals. 3. Caffeine has consistently been shown to improve exercise performance when consumed in doses of 3-6 mg/kg body mass. Minimal effective doses of caffeine currently remain unclear but they may be as low as 2 mg/kg body mass. Very high doses of caffeine (e.g. 9 mg/kg) are associated with a high incidence of side-effects and do not seem to be required to elicit an ergogenic effect. 4. The most commonly used timing of caffeine supplementation is 60 min pre-exercise. Optimal timing of caffeine ingestion likely depends on the source of caffeine. For example, as compared to caffeine capsules, caffeine chewing gums may require a shorter waiting time from consumption to the start of the exercise session. 5. Caffeine appears to improve physical performance in both trained and untrained individuals. 6. Inter-individual differences in sport and exercise performance as well as adverse effects on sleep or feelings of anxiety following caffeine ingestion may be attributed to genetic variation associated with caffeine metabolism, and physical and psychological response. Other factors such as habitual caffeine intake also may play a role in between-individual response variation. 7. Caffeine has been shown to be ergogenic for cognitive function, including attention and vigilance, in most individuals. 8. Caffeine may improve cognitive and physical performance in some individuals under conditions of sleep deprivation. 9. The use of caffeine in conjunction with endurance exercise in the heat and at altitude is well supported when dosages range from 3 to 6 mg/kg and 4-6 mg/kg, respectively. 10. Alternative sources of caffeine such as caffeinated chewing gum, mouth rinses, energy gels and chews have been shown to improve performance, primarily in aerobic exercise. 11. Energy drinks and pre-workout supplements containing caffeine have been demonstrated to enhance both anaerobic and aerobic performance.


Asunto(s)
Cafeína/farmacología , Ejercicio Físico/fisiología , Sociedades Médicas , Fenómenos Fisiológicos en la Nutrición Deportiva , Ciencias de la Nutrición y del Deporte , Ansiedad/inducido químicamente , Ansiedad/genética , Rendimiento Atlético/fisiología , Cafeína/administración & dosificación , Cafeína/efectos adversos , Cafeína/farmacocinética , Cápsulas , Goma de Mascar , Cognición/efectos de los fármacos , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Doping en los Deportes , Cálculo de Dosificación de Drogas , Bebidas Energéticas , Calor , Humanos , Movimiento/efectos de los fármacos , Movimiento/fisiología , Fuerza Muscular/efectos de los fármacos , Fuerza Muscular/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Sustancias para Mejorar el Rendimiento/farmacología , Resistencia Física/efectos de los fármacos , Resistencia Física/fisiología , Rendimiento Físico Funcional , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Sueño/efectos de los fármacos
4.
Nutrients ; 12(8)2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784372

RESUMEN

This study examined the cardiac autonomic responses, as measured by heart rate variability (HRV), during cycling exercise and short-term rest after energy drink consumption. Seventeen participants (seven males and 10 females; age: 22.8 ± 3.5 years; BMI: 24.3 ± 3.3 kg/m2) completed this double-blind, placebo-controlled, counterbalanced crossover design study. Participants received an energy drink formula containing 140 mg of caffeine and a placebo in a randomized order before completing a 10-min steady-state warm up (WUP) and a graded exercise test to exhaustion (GXT) followed by a 15-min short-term rest (STR) period. Heartbeat intervals were recorded using a heart rate monitor. Data were divided into WUP, GXT, and STR phases, and HRV parameters were averaged within each phase. Additionally, root mean square of the standard deviation of R-R intervals (RMSSD) during GXT was analyzed to determine the HRV threshold. Separate two-way (sex (male vs. female) x drink (energy drink vs. placebo)) repeated measures ANOVA were utilized. Significant increases in high frequency (HF) and RMSSD were shown during WUP after energy drink consumption, while interactions between drink and sex were observed for HRV threshold parameters (initial RMSSD and rate of RMSSD decline). No significant differences were noted during STR. Energy drink consumption may influence cardiac autonomic responses during low-intensity exercise, and sex-based differences in response to graded exercise to exhaustion may exist.


Asunto(s)
Ciclismo/fisiología , Ingestión de Líquidos/fisiología , Bebidas Energéticas , Frecuencia Cardíaca/fisiología , Factores Sexuales , Análisis de Varianza , Cafeína/administración & dosificación , Estudios Cruzados , Método Doble Ciego , Metabolismo Energético/fisiología , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Esfuerzo Físico/fisiología , Descanso/fisiología , Adulto Joven
5.
J Sports Sci ; 38(14): 1615-1623, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32316854

RESUMEN

Post-activation potentiation likely acutely improves power-based performance; however, few studies have demonstrated improved endurance performance. Forty collegiate female rowers performed isometric potentiating (ISO), dynamic potentiating (DYN) and control (CON) warm-up protocols on a rowing ergometer, followed by a three-minute all-out test to evaluate their total distance, peak power, mean power, critical power, anaerobic working capacity (W') and stroke rate. Fifteen-second splits were also analysed. ISO consisted of 5 × 5-second static muscle actions with the ergometer handle rendered immovable with a nylon strap, while DYN consisted of 2 × 10-second all-out rowing bouts, separated by a 2-minute rest interval. The participants were divided into high and low experience groups by median experience level (3.75 years) for statistical analysis. Significant differences (DYN > CON; p < 0.05) were found for distance (+5.6 m), mean power (+5.9 W) and W' (+1561.6 J) for more experienced rowers (n = 19) and no differences for less experienced rowers (n = 18). Mean power in DYN was significantly greater than CON and ISO in the 15-30, 30-45, 45-60 and 60-75 second intervals independent of experience level. These results suggest that DYN may benefit experienced female rowers and that these strategies might benefit a greater power output over shorter distances regardless of experience.


Asunto(s)
Resistencia Física/fisiología , Ejercicio de Calentamiento , Deportes Acuáticos/fisiología , Estudios Cruzados , Prueba de Esfuerzo , Femenino , Humanos , Contracción Isométrica/fisiología , Adulto Joven
6.
J Int Soc Sports Nutr ; 17(1): 10, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054486

RESUMEN

BACKGROUND: Thermogenic fitness drink formulas (TFD) have been shown to increase energy expenditure and markers of lipid metabolism. The purpose of the current study was to compare TFD formulas containing different caffeine concentrations versus a placebo drink on energy expenditure and lipid metabolism at rest and during exercise. METHODS: Thirty-two recreationally active participants (22.9 ± 0.7 y, 167.1 ± 1.4 cm, 68.8 ± 2.0 kg, 24.0 ± 1.2% fat) who were regular caffeine consumers, participated in this randomized, double-blind, crossover design study. Participants reported to the laboratory on three occasions, each of which required consumption of either a TFD containing 140 mg or 100 mg of caffeine or a placebo. Baseline measurements of resting energy expenditure (REE) and resting fat oxidation (RFO) were assessed using indirect calorimetry as well as measurements of serum glycerol concentration. Measurements were repeated at 30, 60, 90 min post-ingestion. Following resting measures, participants completed a graded exercise test to determine maximal oxygen uptake (V̇O2max), maximal fat oxidation (MFO) and the exercise intensity that elicits MFO (Fatmax), and total energy expenditure (EE). RESULTS: A significant interaction was shown for REE (p < 0.01) and RFO (p < 0.01). Area under the curve analysis showed an increased REE for the 140 mg compared to the 100 mg formula (p = 0.02) and placebo (p < 0.01) and an increased REE for the 100 mg formula compared to placebo (p = 0.02). RFO significantly decreased for caffeinated formulas at 30 min post ingestion compared to placebo and baseline (p < 0.01) and significantly increased for the 140 mg formula at 60 min post-ingestion (p = 0.03). A main effect was shown for serum glycerol concentrations over time (p < 0.01). No significant differences were shown for V̇O2max (p = 0.12), Fatmax (p = 0.22), and MFO (p = 0.05), and EE (p = 0.08) across drinks. CONCLUSIONS: Our results suggest that TFD formulas containing 100 and 140 mg of caffeine are effective in increasing REE and that a 40 mg of caffeine difference between the tested formulas may impact REE and RFO in healthy individuals within 60 min of ingestion.


Asunto(s)
Cafeína/farmacología , Metabolismo Energético , Ejercicio Físico , Metabolismo de los Lípidos , Sustancias para Mejorar el Rendimiento/farmacología , Adolescente , Adulto , Bebidas , Calorimetría Indirecta , Estudios Cruzados , Método Doble Ciego , Prueba de Esfuerzo , Femenino , Glicerol/sangre , Humanos , Masculino , Descanso , Adulto Joven
7.
J Int Soc Sports Nutr ; 7: 35, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-20979659

RESUMEN

BACKGROUND: It has been demonstrated that acute GPLC supplementation produces enhanced anaerobic work capacity with reduced lactate production in resistance trained males. However, it is not known what effects chronic GPLC supplementation has on anaerobic performances or lactate clearance. PURPOSE: The purpose of this study was to examine the long-term effects of different dosages of GPLC supplementation on repeated high intensity stationary cycle sprint performance. METHODS: Forty-five resistance trained men participated in a double-blind, controlled research study. All subjects completed two testing sessions, seven days apart, 90 minutes following oral ingestion of either 4.5 grams GPLC or 4.5 grams cellulose (PL), in randomized order. The exercise testing protocol consisted of five 10-second Wingate cycle sprints separated by 1-minute active recovery periods. Following completion of the second test session, the 45 subjects were randomly assigned to receive 1.5 g, 3.0 g, or 4.5 g GPLC per day for a 28 day period. Subjects completed a third test session following the four weeks of GPLC supplementation using the same testing protocol. Values of peak power (PP), mean power (MP) and percent decrement of power (DEC) were determined per bout and standardized relative to body mass. Heart rate (HR) and blood lactate (LAC) were measured prior to, during and following the five sprint bouts. RESULTS: There were no significant effects of condition or significant interaction effects detected for PP and MP. However, results indicated that sprint bouts three, four and five produced 2 - 5% lower values of PP and 3 - 7% lower values of MP with GPLC at 3.0 or 4.5 g per day as compared to baseline values. Conversely, 1.5 g GPLC produced 3 - 6% higher values of PP and 2 -5% higher values of MP compared with PL baseline values. Values of DEC were significantly greater (15-20%) greater across the five sprint bouts with 3.0 g or 4.5 g GPLC, but the 1.5 g GPLC supplementation produced DEC values -5%, -3%, +4%, +5%, and +2% different from the baseline PL values. The 1.5 g group displayed a statistically significant 24% reduction in net lactate accumulation per unit power output (p < 0.05). CONCLUSIONS: The effects of GPLC supplementation on anaerobic work capacity and lactate accumulation appear to be dosage dependent. Four weeks of GPLC supplementation at 3.0 and 4.5 g/day resulted in reduced mean values of power output with greater rates of DEC compared with baseline while 1.5 g/day produced higher mean values of MP and PP with modest increases of DEC. Supplementation of 1.5 g/day also produced a significantly lower rate of lactate accumulation per unit power output compared with 3.0 and 4.5 g/day. In conclusion, GPLC appears to be a useful dietary supplement to enhance anaerobic work capacity and potentially sport performance, but apparently the dosage must be determined specific to the intensity and duration of exercise.

8.
J Int Soc Sports Nutr ; 7(1): 5, 2010 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-20205813

RESUMEN

Position Statement: The position of The Society regarding caffeine supplementation and sport performance is summarized by the following seven points: 1.) Caffeine is effective for enhancing sport performance in trained athletes when consumed in low-to-moderate dosages (~3-6 mg/kg) and overall does not result in further enhancement in performance when consumed in higher dosages (>/= 9 mg/kg). 2.) Caffeine exerts a greater ergogenic effect when consumed in an anhydrous state as compared to coffee. 3.) It has been shown that caffeine can enhance vigilance during bouts of extended exhaustive exercise, as well as periods of sustained sleep deprivation. 4.) Caffeine is ergogenic for sustained maximal endurance exercise, and has been shown to be highly effective for time-trial performance. 5.) Caffeine supplementation is beneficial for high-intensity exercise, including team sports such as soccer and rugby, both of which are categorized by intermittent activity within a period of prolonged duration. 6.) The literature is equivocal when considering the effects of caffeine supplementation on strength-power performance, and additional research in this area is warranted. 7.) The scientific literature does not support caffeine-induced diuresis during exercise, or any harmful change in fluid balance that would negatively affect performance.

9.
J Int Soc Sports Nutr ; 6: 9, 2009 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-19341458

RESUMEN

BACKGROUND: Recent research has indicated that short term administration of glycine propionyl-L-carnitine (GPLC) significantly elevates levels of nitric oxide metabolites at rest and in response to reactive hyperaemia. However, no scientific evidence exists that suggests such supplementation enhances exercise performance in healthy, trained individuals. The purpose of this study was to examine the effects of GPLC on the performance of repeated high intensity stationary cycle sprints with limited recovery periods in resistance trained male subjects. METHODS: In a double-blind, placebo-controlled, cross-over design, twenty-four male resistance trained subjects (25.2 +/- 3.6 years) participated in two test sessions separated by one week. Testing was performed 90 minutes following oral ingestion of either 4.5 grams GPLC or 4.5 grams cellulose (PL), in randomized order. The exercise testing protocol consisted of five 10-second Wingate cycle sprints separated by 1-minute active recovery periods. Peak (PP) and mean values (MP) of sprint power output and percent decrement of power (DEC) were determined per bout and standardized relative to body masss. Heart rate (HR) and blood lactate (LAC) were measured prior to, during and following the five sprint bouts. RESULTS: Significant main effects (p < 0.001) were observed for sprint bout order in values of PP, MP, DEC, and HR. There were significant main effects detected for condition in PP and MP (p < 0.05), with values across the five sprint bouts 2.6 - 15% greater with GPLC. Significant statistical interactions were detected between bout order and condition for both PP and MP (p < 0.05). There was a significant main effect of condition for LAC, LAC values 15.7% lower 4 min post-exercise with GPLC (p = 0.09) and with GPLC resulting in 16.2% less LAC at 14 min post-exercise (p < 0.05). CONCLUSION: These findings indicate that short-term oral supplementation of GPLC can enhance peak power production in resistance trained males with significantly less LAC accumulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...