Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172082

RESUMEN

Layered metal thio- and selenophosphates (MTPs) are a family of van der Waals gapped materials that exhibit a multitude of functionalities in terms of magnetic, ferroelectric, and optical properties. Despite the recent progress in terms of understanding the material properties of these compounds, the potential of MTPs as a material class yet needs further scrutiny, especially in terms of nonlinear optical properties. Recent reports of efficient low-order harmonic generation and extremely high third-order nonlinear optical properties in MTPs suggest the potential application of these materials in integrated nanophotonics. In this article, we investigate the high-order nonlinear response of bulk and exfoliated thin-film crystals of copper indium thiophosphate (CIPS) to intense mid-infrared fields through experimental and computational studies of high-order harmonic generation (HHG). From a driving laser source with a 3.2 µm wavelength, we generate odd and even harmonics up to the 10th order, exceeding the bandgap of the material. We note conversion efficiencies as high as 10-7 measured for the fifth and seventh harmonics and observe that the harmonic intensities follow a power law scaling with the driving laser intensity, suggesting a perturbative nonlinear optical origin of the observed harmonics for both bulk and thin flakes. Furthermore, first-principles calculations suggest that the generation of the highest harmonic orders results from electron-electron interactions, suggesting a correlation-mediated enhancement of the high-order optical nonlinearity.

3.
Bioorg Med Chem ; 78: 117130, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36542958

RESUMEN

PPAR gamma (PPARG) is a ligand activated transcription factor that regulates genes involved in inflammation, bone biology, lipid homeostasis, as well as a master regulator of adipogenesis and a potential lineage driver of luminal bladder cancer. While PPARG agonists lead to transcriptional activation of canonical target genes, inverse agonists have the opposite effect through inducing a transcriptionally repressive complex leading to repression of canonical target gene expression. While many agonists have been described and tested clinically, inverse agonists offer an underexplored avenue to modulate PPARG biology in vivo. Current inverse agonists lack favorable in vivo properties; herein we describe the discovery and characterization of a series of orally bioavailable 4-chloro-6-fluoroisophthalamides as covalent PPARG inverse-agonists, BAY-5516, BAY-5094, and BAY-9683. Structural studies of this series revealed distinct pre- and post-covalent binding positions, which led to the hypothesis that interactions in the pre-covalent conformation are primarily responsible for driving affinity, while interactions in the post-covalent conformation are more responsible for cellular functional effects by enhancing PPARG interactions with its corepressors. The need to simultaneously optimize for two distinct states may partially explain the steep SAR observed. Exquisite selectivity was achieved over related nuclear receptors in the subfamily due in part to a covalent warhead with low reactivity through an SNAr mechanism in addition to the specificity gained through covalent binding to a reactive cysteine uniquely positioned within the PPARG LBD. BAY-5516, BAY-5094, and BAY-9683 lead to pharmacodynamic regulation of PPARG target gene expression in vivo comparable to known inverse agonist SR10221 and represent new tools for future in vivo studies to explore their potential utility for treatment of disorders of hyperactivated PPARG including luminal bladder cancer and other disorders.


Asunto(s)
PPAR gamma , Neoplasias de la Vejiga Urinaria , Humanos , PPAR gamma/agonistas , Agonismo Inverso de Drogas , Agonistas de PPAR-gamma , Regulación de la Expresión Génica
4.
J Med Chem ; 65(21): 14843-14863, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36270630

RESUMEN

The ligand-activated nuclear receptor peroxisome-proliferator-activated receptor-γ (PPARG or PPARγ) represents a potential target for a new generation of cancer therapeutics, especially in muscle-invasive luminal bladder cancer where PPARγ is a critical lineage driver. Here we disclose the discovery of a series of chloro-nitro-arene covalent inverse-agonists of PPARγ that exploit a benzoxazole core to improve interactions with corepressors NCOR1 and NCOR2. In vitro treatment of sensitive cell lines with these compounds results in the robust regulation of PPARγ target genes and antiproliferative effects. Despite their imperfect physicochemical properties, the compounds showed modest pharmacodynamic target regulation in vivo. Improvements to the in vitro potency and efficacy of BAY-4931 and BAY-0069 compared to those of previously described PPARγ inverse-agonists show that these compounds are novel tools for probing the in vitro biology of PPARγ inverse-agonism.


Asunto(s)
PPAR gamma , PPAR gamma/metabolismo , Ligandos
5.
Cell Syst ; 13(9): 724-736.e9, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36057257

RESUMEN

Identifying the chemical regulators of biological pathways is a time-consuming bottleneck in developing therapeutics and research compounds. Typically, thousands to millions of candidate small molecules are tested in target-based biochemical screens or phenotypic cell-based screens, both expensive experiments customized to each disease. Here, our uncustomized, virtual, profile-based screening approach instead identifies compounds that match to pathways based on the phenotypic information in public cell image data, created using the Cell Painting assay. Our straightforward correlation-based computational strategy retrospectively uncovered the expected, known small-molecule regulators for 32% of positive-control gene queries. In prospective, discovery mode, we efficiently identified new compounds related to three query genes and validated them in subsequent gene-relevant assays, including compounds that phenocopy or pheno-oppose YAP1 overexpression and kill a Yap1-dependent sarcoma cell line. This image-profile-based approach could replace many customized labor- and resource-intensive screens and accelerate the discovery of biologically and therapeutically useful compounds.


Asunto(s)
Estudios Prospectivos , Línea Celular , Estudios Retrospectivos
7.
Nat Commun ; 9(1): 5450, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30575730

RESUMEN

Systematic exploration of cancer cell vulnerabilities can inform the development of novel cancer therapeutics. Here, through analysis of genome-scale loss-of-function datasets, we identify adenosine deaminase acting on RNA (ADAR or ADAR1) as an essential gene for the survival of a subset of cancer cell lines. ADAR1-dependent cell lines display increased expression of interferon-stimulated genes. Activation of type I interferon signaling in the context of ADAR1 deficiency can induce cell lethality in non-ADAR1-dependent cell lines. ADAR deletion causes activation of the double-stranded RNA sensor, protein kinase R (PKR). Disruption of PKR signaling, through inactivation of PKR or overexpression of either a wildtype or catalytically inactive mutant version of the p150 isoform of ADAR1, partially rescues cell lethality after ADAR1 loss, suggesting that both catalytic and non-enzymatic functions of ADAR1 may contribute to preventing PKR-mediated cell lethality. Together, these data nominate ADAR1 as a potential therapeutic target in a subset of cancers.


Asunto(s)
Adenosina Desaminasa/genética , Neoplasias Pulmonares/genética , Proteínas de Unión al ARN/genética , eIF-2 Quinasa/metabolismo , Células A549 , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Helicasa Inducida por Interferón IFIH1/metabolismo , Interferones/metabolismo , Fosforilación
8.
Cancer Res ; 77(24): 6987-6998, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28923856

RESUMEN

The PPARG gene encoding the nuclear receptor PPARγ is activated in bladder cancer, either directly by gene amplification or mutation, or indirectly by mutation of the RXRA gene, which encodes the heterodimeric partner of PPARγ. Here, we show that activating alterations of PPARG or RXRA lead to a specific gene expression signature in bladder cancers. Reducing PPARG activity, whether by pharmacologic inhibition or genetic ablation, inhibited proliferation of PPARG-activated bladder cancer cells. Our results offer a preclinical proof of concept for PPARG as a candidate therapeutic target in bladder cancer. Cancer Res; 77(24); 6987-98. ©2017 AACR.


Asunto(s)
Terapia Molecular Dirigida , PPAR gamma/genética , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Amplificación de Genes/fisiología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Análisis por Micromatrices , Mutación/fisiología , Transcriptoma/fisiología
9.
J Chem Phys ; 140(14): 144506, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24735304

RESUMEN

We examine variations in the glass transition temperature (T(g)(x)), molar volume (V(m)(x)), and Raman scattering of titled glasses as a function of modifier (BaO) content in the 25% < x < 48% range. Three distinct regimes of behavior are observed; at low x, 24% < x < 29% range, the modifier largely polymerizes the backbone, T(g)(x) increase, features that we identify with the stressed-rigid elastic phase. At high x, 32% < x < 48% range, the modifier depolymerizes the network by creating non-bridging oxygen (NBO) atoms; in this regime T(g)(x) decreases, and networks are viewed to be in the flexible elastic phase. In the narrow intermediate x regime, 29% < x < 32% range, T(g)(x) shows a broad global maximum almost independent of x, and Raman mode scattering strengths and mode frequencies become relatively x-independent, V(m)(x) show a global minimum, features that we associate with the isostatically rigid elastic phase, also called the intermediate phase. In this phase, medium range structures adapt as revealed by the count of Lagrangian bonding constraints and Raman mode scattering strengths.

10.
Arch Biochem Biophys ; 420(1): 185-93, 2003 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-14622989

RESUMEN

The retinoid-X receptor (RXR) is a ligand activated nuclear receptor that is the heterodimer partner for many class II nuclear receptors. Previously identified natural ligands for this receptor include 9-cis retinoic acid (9cRA), docosahexaenoic acid, and phytanic acid. Our studies were performed to determine if there are any unidentified, physiologically important RXR ligands. Agonists for RXR were purified from rat heart and testes lipid extracts with the use of a cell-based reporter assay to monitor RXR activation. Purified active fractions contained a variety of unsaturated fatty acids and components were quantified by gas-liquid chromatography of derivatized samples. The corresponding fatty acid standards elicited a similar response in the reporter cell assay. Competition binding analysis revealed that the active fatty acids compete with [3H]9cRA for binding to RXR. Non-esterified fatty acids were analyzed from lipid extracts of isolated heart and testes nuclei and endogenous concentrations were found to be within the range of their determined binding affinities. Our studies reveal tissue dependent profiles of RXR agonists and support the idea of unsaturated fatty acids as physiological ligands of RXR.


Asunto(s)
Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/metabolismo , Miocardio/química , Miocardio/metabolismo , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/metabolismo , Testículo/química , Testículo/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Animales , Células COS , Chlorocebus aethiops , Ácidos Grasos Insaturados/aislamiento & purificación , Ligandos , Masculino , Especificidad de Órganos , Ratas , Ratas Sprague-Dawley , Receptores de Ácido Retinoico/agonistas , Receptores X Retinoide , Factores de Transcripción/agonistas , Activación Transcripcional/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...