Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Contam Hydrol ; 242: 103849, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34147829

RESUMEN

Trace element (TE) pollution in groundwater resources is one of the major concerns in both developing and developed countries as it can directly affect human health. Arsenic (As), Barium (Ba), and Rubidium (Rb) can be considered as TEs naturally present in groundwater due to water-rock interactions in Campania Plain (CP) aquifers, in South Italy. Their concentration could be predicted via some readily available input variables using an algorithm like the iterative classifier optimizer (ICO) for regression, and novel hybrid algorithms with additive regression (AR-ICO), attribute selected classifier (ASC-ICO) and bagging (BA-ICO). In this regard, 244 groundwater samples were collected from water wells within the CP and analyzed with respect to the electrical conductivity, pH, major ions and selected TEs. To develop the models, the available dataset was divided randomly into two subsets for model training (70% of the dataset) and evaluation (30% of the dataset), respectively. Based on the correlation coefficient (r), different input variables combinations were constructed to find the most effective one. Each model's performance was evaluated using common statistical and visual metrics. Results indicated that the prediction of As and Ba concentrations strongly depends on HCO3-, while Na+ is the most effective variable on Rb prediction. Also, the findings showed that the most powerful predictive models were those that used all the available input variables. According to models' performance evaluation metrics, the hybrid ASC-ICO outperformed other hybrid (BA- and AR-ICO) and standalone (ICO) algorithms to predict As and Ba concentrations, while both hybrid ASC- and BA-ICO models had higher accuracy and lower error than other algorithms for Rb prediction.


Asunto(s)
Agua Subterránea , Oligoelementos , Contaminantes Químicos del Agua , Algoritmos , Monitoreo del Ambiente , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Pozos de Agua
2.
J Environ Manage ; 236: 466-480, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30771667

RESUMEN

Land subsidence caused by land use change and overexploitation of groundwater is an example of mismanagement of natural resources, yet subsidence remains difficult to predict. In this study, the relationship between land subsidence features and geo-environmental factors is investigated by comparing two machine learning algorithms (MLA): maximum entropy (MaxEnt) and genetic algorithm rule-set production (GARP) algorithms in the Kashmar Region, Iran. Land subsidence features (N = 79) were mapped using field surveys. Land use, lithology, the distance from traditional groundwater abstraction systems (Qanats), from afforestation projects, from neighboring faults, and the drawdown of groundwater level (DGL) (1991-2016) were used as predictive variables. Jackknife resampling showed that DGL, distance from afforestation projects, and distance from Qanat systems are major factors influencing land subsidence, with geology and faults being less important. The GARP algorithm outperformed the MaxEnt algorithm for all performance metrics. The performance of both models, as measured by the area under the receiver-operator characteristic curve (AUROC), decreased from 88.9-94.4% to 82.5-90.3% when DGL was excluded as a predictor, though the performance of GARP was still good to excellent even without DGL. MLAs produced maps of subsidence risk with acceptable accuracy, both with and without data on groundwater drawdown, suggesting that MLAs can usefully inform efforts to manage subsidence in data-scarce regions, though the highest accuracy requires data on changes in groundwater level.


Asunto(s)
Agua Subterránea , Geología , Actividades Humanas , Irán , Aprendizaje Automático
3.
Environ Monit Assess ; 190(3): 149, 2018 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-29455381

RESUMEN

Ever increasing demand for water resources for different purposes makes it essential to have better understanding and knowledge about water resources. As known, groundwater resources are one of the main water resources especially in countries with arid climatic condition. Thus, this study seeks to provide groundwater potential maps (GPMs) employing new algorithms. Accordingly, this study aims to validate the performance of C5.0, random forest (RF), and multivariate adaptive regression splines (MARS) algorithms for generating GPMs in the eastern part of Mashhad Plain, Iran. For this purpose, a dataset was produced consisting of spring locations as indicator and groundwater-conditioning factors (GCFs) as input. In this research, 13 GCFs were selected including altitude, slope aspect, slope angle, plan curvature, profile curvature, topographic wetness index (TWI), slope length, distance from rivers and faults, rivers and faults density, land use, and lithology. The mentioned dataset was divided into two classes of training and validation with 70 and 30% of the springs, respectively. Then, C5.0, RF, and MARS algorithms were employed using R statistical software, and the final values were transformed into GPMs. Finally, two evaluation criteria including Kappa and area under receiver operating characteristics curve (AUC-ROC) were calculated. According to the findings of this research, MARS had the best performance with AUC-ROC of 84.2%, followed by RF and C5.0 algorithms with AUC-ROC values of 79.7 and 77.3%, respectively. The results indicated that AUC-ROC values for the employed models are more than 70% which shows their acceptable performance. As a conclusion, the produced methodology could be used in other geographical areas. GPMs could be used by water resource managers and related organizations to accelerate and facilitate water resource exploitation.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua Subterránea/análisis , Modelos Teóricos , Ríos/química , Recursos Hídricos , Algoritmos , Clima Desértico , Sistemas de Información Geográfica , Irán , Análisis Multivariante , Curva ROC , Análisis de Regresión , Recursos Hídricos/provisión & distribución
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...