Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Immunity ; 57(6): 1243-1259.e8, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38744291

RESUMEN

Epithelial cells secrete chloride to regulate water release at mucosal barriers, supporting both homeostatic hydration and the "weep" response that is critical for type 2 immune defense against parasitic worms (helminths). Epithelial tuft cells in the small intestine sense helminths and release cytokines and lipids to activate type 2 immune cells, but whether they regulate epithelial secretion is unknown. Here, we found that tuft cell activation rapidly induced epithelial chloride secretion in the small intestine. This response required tuft cell sensory functions and tuft cell-derived acetylcholine (ACh), which acted directly on neighboring epithelial cells to stimulate chloride secretion, independent of neurons. Maximal tuft cell-induced chloride secretion coincided with immune restriction of helminths, and clearance was delayed in mice lacking tuft cell-derived ACh, despite normal type 2 inflammation. Thus, we have uncovered an epithelium-intrinsic response unit that uses ACh to couple tuft cell sensing to the secretory defenses of neighboring epithelial cells.


Asunto(s)
Acetilcolina , Cloruros , Células Epiteliales , Mucosa Intestinal , Animales , Acetilcolina/metabolismo , Ratones , Cloruros/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/parasitología , Células Epiteliales/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitología , Intestino Delgado/inmunología , Intestino Delgado/parasitología , Intestino Delgado/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Células en Penacho
2.
Proc Natl Acad Sci U S A ; 120(23): e2216908120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37253002

RESUMEN

Succinate produced by the commensal protist Tritrichomonas musculis (T. mu) stimulates chemosensory tuft cells, resulting in intestinal type 2 immunity. Tuft cells express the succinate receptor SUCNR1, yet this receptor does not mediate antihelminth immunity nor alter protist colonization. Here, we report that microbial-derived succinate increases Paneth cell numbers and profoundly alters the antimicrobial peptide (AMP) landscape in the small intestine. Succinate was sufficient to drive this epithelial remodeling, but not in mice lacking tuft cell chemosensory components required to detect this metabolite. Tuft cells respond to succinate by stimulating type 2 immunity, leading to interleukin-13-mediated epithelial and AMP expression changes. Moreover, type 2 immunity decreases the total number of mucosa-associated bacteria and alters the small intestinal microbiota composition. Finally, tuft cells can detect short-term bacterial dysbiosis that leads to a spike in luminal succinate levels and modulate AMP production in response. These findings demonstrate that a single metabolite produced by commensals can markedly shift the intestinal AMP profile and suggest that tuft cells utilize SUCNR1 and succinate sensing to modulate bacterial homeostasis.


Asunto(s)
Antiinfecciosos , Mucosa Intestinal , Ratones , Animales , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Intestinos , Ácido Succínico/metabolismo , Antiinfecciosos/metabolismo
3.
Parasite Immunol ; 45(6): e12981, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37038837

RESUMEN

Schistosomiasis affects nearly 240 million people in predominately low- and middle-income countries and ranks second in the number of cases and socio-economic burden among all parasitic diseases. Despite the enormous burden posed by schistosomes, our understanding of how schistosomiasis impacts infected human tissues remains limited. Intestinal schistosomiasis in animal models leads to goblet cell hyperplasia, likely increasing mucus production and reflecting an intestinal type 2 immune response. However, it is unknown whether these same changes occur in schistosome-infected humans. Using immunofluorescence and light microscopy, we compared the abundance and morphology of goblet cells in patients diagnosed with schistosomiasis to uninfected controls. The mucin-containing vesicles in goblet cells from schistosome-infected patients were significantly larger (hypertrophic) than uninfected individuals, although goblet cell hyperplasia was absent in chronic human schistosomiasis. In addition, we examined tuft cells in the large intestinal epithelium of control and schistosome-infected patients. Tuft cell numbers expand during helminth infection in mice, but these cells have not been characterized in human parasite infections. We found no evidence of tuft cell hyperplasia during human schistosome infection. Thus, our study provides novel insight into schistosome-associated changes to the intestinal epithelium in humans, suggesting an increase in mucus production by large intestinal goblet cells but relatively minor effects on tuft cell numbers.


Asunto(s)
Esquistosomiasis , Humanos , Animales , Ratones , Hiperplasia/metabolismo , Hiperplasia/patología , Células Caliciformes/metabolismo , Mucosa Intestinal/metabolismo , Mucinas/metabolismo
4.
bioRxiv ; 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36993541

RESUMEN

Tuft cells are solitary chemosensory epithelial cells that can sense lumenal stimuli at mucosal barriers and secrete effector molecules to regulate the physiology and immune state of their surrounding tissue. In the small intestine, tuft cells detect parasitic worms (helminths) and microbe-derived succinate, and signal to immune cells to trigger a Type 2 immune response that leads to extensive epithelial remodeling spanning several days. Acetylcholine (ACh) from airway tuft cells has been shown to stimulate acute changes in breathing and mucocilliary clearance, but its function in the intestine is unknown. Here we show that tuft cell chemosensing in the intestine leads to release of ACh, but that this does not contribute to immune cell activation or associated tissue remodeling. Instead, tuft cell-derived ACh triggers immediate fluid secretion from neighboring epithelial cells into the intestinal lumen. This tuft cell-regulated fluid secretion is amplified during Type 2 inflammation, and helminth clearance is delayed in mice lacking tuft cell ACh. The coupling of the chemosensory function of tuft cells with fluid secretion creates an epithelium-intrinsic response unit that effects a physiological change within seconds of activation. This response mechanism is shared by tuft cells across tissues, and serves to regulate the epithelial secretion that is both a hallmark of Type 2 immunity and an essential component of homeostatic maintenance at mucosal barriers.

5.
Immunohorizons ; 4(1): 23-32, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980480

RESUMEN

Tuft cells are an epithelial cell type critical for initiating type 2 immune responses to parasites and protozoa in the small intestine. To respond to these stimuli, intestinal tuft cells use taste chemosensory signaling pathways, but the role of taste receptors in type 2 immunity is poorly understood. In this study, we show that the taste receptor TAS1R3, which detects sweet and umami in the tongue, also regulates tuft cell responses in the distal small intestine. BALB/c mice, which have an inactive form of TAS1R3, as well as Tas1r3-deficient C57BL6/J mice both have severely impaired responses to tuft cell-inducing signals in the ileum, including the protozoa Tritrichomonas muris and succinate. In contrast, TAS1R3 is not required to mount an immune response to the helminth Heligmosomoides polygyrus, which infects the proximal small intestine. Examination of uninfected Tas1r3-/- mice revealed a modest reduction in the number of tuft cells in the proximal small intestine but a severe decrease in the distal small intestine at homeostasis. Together, these results suggest that TAS1R3 influences intestinal immunity by shaping the epithelial cell landscape at steady-state.


Asunto(s)
Células Epiteliales/inmunología , Mucosa Intestinal/inmunología , Intestino Delgado/inmunología , Receptores Acoplados a Proteínas G/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Células Epiteliales/metabolismo , Microbioma Gastrointestinal , Homeostasis , Íleon/inmunología , Íleon/parasitología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitología , Intestino Delgado/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nematospiroides dubius/inmunología , Receptores Acoplados a Proteínas G/deficiencia , Infecciones por Strongylida/inmunología , Infecciones por Strongylida/parasitología , Gusto/fisiología , Tritrichomonas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...