Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Mol Neurosci ; 16: 1231659, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37588057

RESUMEN

Introduction: In Krabbe disease (KD), mutations in ß-galactosylceramidase (GALC), a lysosomal enzyme responsible for the catabolism of galactolipids, leads to the accumulation of its substrates galactocerebroside and psychosine. This neurologic condition is characterized by a severe and progressive demyelination together with neuron-autonomous defects and degeneration. Twitcher mice mimic the infantile form of KD, which is the most common form of the human disease. The Twitcher CNS and PNS present demyelination, axonal loss and neuronal defects including decreased levels of acetylated tubulin, decreased microtubule stability and impaired axonal transport. Methods: We tested whether inhibiting the α-tubulin deacetylase HDAC6 with a specific inhibitor, ACY-738, was able to counteract the early neuropathology and neuronal defects of Twitcher mice. Results: Our data show that delivery of ACY-738 corrects the low levels of acetylated tubulin in the Twitcher nervous system. Furthermore, it reverts the loss myelinated axons in the sciatic nerve and in the optic nerve when administered from birth to postnatal day 9, suggesting that the drug holds neuroprotective properties. The extended delivery of ACY-738 to Twitcher mice delayed axonal degeneration in the CNS and ameliorated the general presentation of the disease. ACY-738 was effective in rescuing neuronal defects of Twitcher neurons, stabilizing microtubule dynamics and increasing the axonal transport of mitochondria. Discussion: Overall, our results support that ACY-738 has a neuroprotective effect in KD and should be considered as an add-on therapy combined with strategies targeting metabolic correction.

2.
ACS Chem Neurosci ; 14(6): 1080-1094, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36812145

RESUMEN

Glycogen synthase kinase 3 (GSK3) remains a therapeutic target of interest for diverse clinical indications. However, one hurdle in the development of small molecule GSK3 inhibitors has been safety concerns related to pan-inhibition of both GSK3 paralogs, leading to activation of the Wnt/ß-catenin pathway and potential for aberrant cell proliferation. Development of GSK3α or GSK3ß paralog-selective inhibitors that could offer an improved safety profile has been reported but further advancement has been hampered by the lack of structural information for GSK3α. Here we report for the first time the crystal structure for GSK3α, both in apo form and bound to a paralog-selective inhibitor. Taking advantage of this new structural information, we describe the design and in vitro testing of novel compounds with up to ∼37-fold selectivity for GSK3α over GSK3ß with favorable drug-like properties. Furthermore, using chemoproteomics, we confirm that acute inhibition of GSK3α can lower tau phosphorylation at disease-relevant sites in vivo, with a high degree of selectivity over GSK3ß and other kinases. Altogether, our studies advance prior efforts to develop GSK3 inhibitors by describing GSK3α structure and novel GSK3α inhibitors with improved selectivity, potency, and activity in disease-relevant systems.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Proteínas Serina-Treonina Quinasas , Glucógeno Sintasa Quinasa 3 beta , Fosforilación , Proliferación Celular/fisiología
3.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34921112

RESUMEN

We uncovered a transcription factor (TF) network that regulates cortical regional patterning in radial glial stem cells. Screening the expression of hundreds of TFs in the developing mouse cortex identified 38 TFs that are expressed in gradients in the ventricular zone (VZ). We tested whether their cortical expression was altered in mutant mice with known patterning defects (Emx2, Nr2f1, and Pax6), which enabled us to define a cortical regionalization TF network (CRTFN). To identify genomic programming underlying this network, we performed TF ChIP-seq and chromatin-looping conformation to identify enhancer-gene interactions. To map enhancers involved in regional patterning of cortical progenitors, we performed assays for epigenomic marks and DNA accessibility in VZ cells purified from wild-type and patterning mutant mice. This integrated approach has identified a CRTFN and VZ enhancers involved in cortical regional patterning in the mouse.


Asunto(s)
Corteza Cerebral/embriología , Redes Reguladoras de Genes , Elementos Reguladores de la Transcripción , Factores de Transcripción/metabolismo , Animales , Factor de Transcripción COUP I/metabolismo , Corteza Cerebral/metabolismo , Epigenoma , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Ratones , Factor de Transcripción PAX6/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Factores de Transcripción/genética
4.
Front Neurol ; 12: 624051, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262517

RESUMEN

Acetylation of tau protein is dysregulated in Alzheimer's Disease (AD). It has been proposed that acetylation of specific sites in the KXGS motif of tau can regulate phosphorylation of nearby residues and reduce the propensity of tau to aggregate. Histone deacetylase 6 (HDAC6) is a cytoplasmic enzyme involved in deacetylation of multiple targets, including tau, and it has been suggested that inhibition of HDAC6 would increase tau acetylation at the KXGS motifs and thus may present a viable therapeutic approach to treat AD. To directly test the contribution of HDAC6 to tau pathology, we intracerebroventricularly injected an antisense oligonucleotide (ASO) directed against HDAC6 mRNA into brains of P301S tau mice (PS19 model), which resulted in a 70% knockdown of HDAC6 protein in the brain. Despite a robust decrease in levels of HDAC6, no increase in tau acetylation was observed. Additionally, no change of tau phosphorylation or tau aggregation was detected upon the knockdown of HDAC6. We conclude that HDAC6 does not impact tau pathology in PS19 mice.

5.
Neurobiol Dis ; 146: 105120, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32991997

RESUMEN

Deposition of tau aggregates in the brain is a pathological hallmark of several neurodegenerative diseases, termed tauopathies, such as Alzheimer's disease (AD), corticobasal degeneration, and progressive supranuclear palsy (PSP). As transcellular spread of pathological tau aggregates has been implicated in disease progression, immunotherapy is being considered as a treatment for tauopathies. Here we report a detailed biochemical and biophysical characterization of the tau-binding properties of gosuranemab, a humanized monoclonal antibody directed against N-terminal tau that is currently being investigated as a treatment for AD. Binding experiments showed that gosuranemab exhibited high affinity for tau monomer, tau fibrils, and insoluble tau from different tauopathies. Epitope mapping studies conducted using X-ray crystallography and mutagenesis showed that gosuranemab bound to human tau residues 15-22. Immunodepletion of pathological human brain homogenates and transgenic mouse interstitial fluid (ISF) with gosuranemab resulted in reduced tau aggregation in tau biosensor cells. Preincubation of seed-competent AD-tau with gosuranemab significantly inhibited tau aggregation in mouse primary cortical neurons. Gosuranemab also significantly reduced unbound N-terminal tau in cerebrospinal fluid (CSF) from individuals with PSP and AD, and in ISF and CSF of treated transgenic mice. These results are consistent with the >90% target engagement observed in the CSF of some clinical trial dosing cohorts and support the evaluation of gosuranemab as a potential treatment for AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Anticuerpos Monoclonales Humanizados/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismo , Animales , Enfermedades de los Ganglios Basales/metabolismo , Ratones Transgénicos , Neuronas/metabolismo , Parálisis Supranuclear Progresiva/metabolismo , Tauopatías/metabolismo , Tauopatías/patología
6.
Pain ; 158(6): 1126-1137, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28267067

RESUMEN

Chemotherapy-induced peripheral neuropathy is one of the most common dose-limiting side effects of cancer treatment. Currently, there is no Food and Drug Administration-approved treatment available. Histone deacetylase 6 (HDAC6) is a microtubule-associated deacetylase whose function includes regulation of α-tubulin-dependent intracellular mitochondrial transport. Here, we examined the effect of HDAC6 inhibition on established cisplatin-induced peripheral neuropathy. We used a novel HDAC6 inhibitor ACY-1083, which shows 260-fold selectivity towards HDAC6 vs other HDACs. Our results show that HDAC6 inhibition prevented cisplatin-induced mechanical allodynia, and also completely reversed already existing cisplatin-induced mechanical allodynia, spontaneous pain, and numbness. These findings were confirmed using the established HDAC6 inhibitor ACY-1215 (Ricolinostat), which is currently in clinical trials for cancer treatment. Mechanistically, treatment with the HDAC6 inhibitor increased α-tubulin acetylation in the peripheral nerve. In addition, HDAC6 inhibition restored the cisplatin-induced reduction in mitochondrial bioenergetics and mitochondrial content in the tibial nerve, indicating increased mitochondrial transport. At a later time point, dorsal root ganglion mitochondrial bioenergetics also improved. HDAC6 inhibition restored the loss of intraepidermal nerve fiber density in cisplatin-treated mice. Our results demonstrate that pharmacological inhibition of HDAC6 completely reverses all the hallmarks of established cisplatin-induced peripheral neuropathy by normalization of mitochondrial function in dorsal root ganglia and nerve, and restoration of intraepidermal innervation. These results are especially promising because one of the HDAC6 inhibitors tested here is currently in clinical trials as an add-on cancer therapy, highlighting the potential for a fast clinical translation of our findings.


Asunto(s)
Cisplatino/efectos adversos , Histona Desacetilasa 6/antagonistas & inhibidores , Ácidos Hidroxámicos/administración & dosificación , Dolor/inducido químicamente , Dolor/prevención & control , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/prevención & control , Pirimidinas/administración & dosificación , Animales , Antineoplásicos/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Dolor/diagnóstico , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
7.
Neuron ; 92(1): 59-74, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27710791

RESUMEN

Elucidating the transcriptional circuitry controlling forebrain development requires an understanding of enhancer activity and regulation. We generated stable transgenic mouse lines that express CreERT2 and GFP from ten different enhancer elements with activity in distinct domains within the embryonic basal ganglia. We used these unique tools to generate a comprehensive regional fate map of the mouse subpallium, including sources for specific subtypes of amygdala neurons. We then focused on deciphering transcriptional mechanisms that control enhancer activity. Using machine-learning computations, in vivo chromosomal occupancy of 13 transcription factors that regulate subpallial patterning and differentiation and analysis of enhancer activity in Dlx1/2 and Lhx6 mutants, we elucidated novel molecular mechanisms that regulate region-specific enhancer activity in the developing brain. Thus, these subpallial enhancer transgenic lines are data and tool resources to study transcriptional regulation of GABAergic cell fate.


Asunto(s)
Diferenciación Celular/genética , Elementos de Facilitación Genéticos/genética , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Animales , Ganglios Basales/crecimiento & desarrollo , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
PLoS One ; 11(4): e0153767, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27073918

RESUMEN

Therapeutic intervention aimed at reactivation of fetal hemoglobin protein (HbF) is a promising approach for ameliorating sickle cell disease (SCD) and ß-thalassemia. Previous studies showed genetic knockdown of histone deacetylase (HDAC) 1 or 2 is sufficient to induce HbF. Here we show that ACY-957, a selective chemical inhibitor of HDAC1 and 2 (HDAC1/2), elicits a dose and time dependent induction of γ-globin mRNA (HBG) and HbF in cultured primary cells derived from healthy individuals and sickle cell patients. Gene expression profiling of erythroid progenitors treated with ACY-957 identified global changes in gene expression that were significantly enriched in genes previously shown to be affected by HDAC1 or 2 knockdown. These genes included GATA2, which was induced greater than 3-fold. Lentiviral overexpression of GATA2 in primary erythroid progenitors increased HBG, and reduced adult ß-globin mRNA (HBB). Furthermore, knockdown of GATA2 attenuated HBG induction by ACY-957. Chromatin immunoprecipitation and sequencing (ChIP-Seq) of primary erythroid progenitors demonstrated that HDAC1 and 2 occupancy was highly correlated throughout the GATA2 locus and that HDAC1/2 inhibition led to elevated histone acetylation at well-known GATA2 autoregulatory regions. The GATA2 protein itself also showed increased binding at these regions in response to ACY-957 treatment. These data show that chemical inhibition of HDAC1/2 induces HBG and suggest that this effect is mediated, at least in part, by histone acetylation-induced activation of the GATA2 gene.


Asunto(s)
Anemia de Células Falciformes/metabolismo , Células Eritroides/efectos de los fármacos , Hemoglobina Fetal/metabolismo , Factor de Transcripción GATA2/metabolismo , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 2/antagonistas & inhibidores , Anemia de Células Falciformes/genética , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Células Eritroides/metabolismo , Factor de Transcripción GATA2/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Globinas beta/genética , Globinas beta/metabolismo
9.
Neuron ; 88(6): 1192-1207, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26671461

RESUMEN

We demonstrate using conditional mutagenesis that Pbx1, with and without Pbx2(+/-) sensitization, regulates regional identity and laminar patterning of the developing mouse neocortex in cortical progenitors (Emx1-Cre) and in newly generated neurons (Nex1-Cre). Pbx1/2 mutants have three salient molecular phenotypes of cortical regional and laminar organization: hypoplasia of the frontal cortex, ventral expansion of the dorsomedial cortex, and ventral expansion of Reelin expression in the cortical plate of the frontal cortex, concomitant with an inversion of cortical layering in the rostral cortex. Molecular analyses, including PBX ChIP-seq, provide evidence that PBX promotes frontal cortex identity by repressing genes that promote dorsocaudal fate.


Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Proteínas de Homeodominio/fisiología , Células-Madre Neurales/fisiología , Neuronas/fisiología , Factores de Transcripción/fisiología , Animales , Animales Recién Nacidos , Ratones , Ratones Transgénicos , Mitosis/fisiología , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Proteína Reelina , Células Madre/fisiología
10.
Neuron ; 82(5): 989-1003, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24814534

RESUMEN

Elucidating the genetic control of cerebral cortical (pallial) development is essential for understanding function, evolution, and disorders of the brain. Transcription factors (TFs) that embryonically regulate pallial regionalization are expressed in gradients, raising the question of how discrete domains are generated. We provide evidence that small enhancer elements active in protodomains integrate broad transcriptional information. CreER(T2) and GFP expression from 14 different enhancer elements in stable transgenic mice allowed us to define a comprehensive regional fate map of the pallium. We explored transcriptional mechanisms that control the activity of the enhancers using informatics, in vivo occupancy by TFs that regulate cortical patterning (CoupTFI, Pax6, and Pbx1), and analysis of enhancer activity in Pax6 mutants. Overall, the results provide insights into how broadly expressed patterning TFs regulate the activity of small enhancer elements that drive gene expression in pallial protodomains that fate map to distinct cortical regions.


Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Transcripción Genética , Animales , Sitios de Unión , Factor de Transcripción COUP I/metabolismo , Proteínas del Ojo/metabolismo , Hipocampo/embriología , Hipocampo/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Transgénicos , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
11.
Cell ; 152(4): 895-908, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23375746

RESUMEN

The mammalian telencephalon plays critical roles in cognition, motor function, and emotion. Though many of the genes required for its development have been identified, the distant-acting regulatory sequences orchestrating their in vivo expression are mostly unknown. Here, we describe a digital atlas of in vivo enhancers active in subregions of the developing telencephalon. We identified more than 4,600 candidate embryonic forebrain enhancers and studied the in vivo activity of 329 of these sequences in transgenic mouse embryos. We generated serial sets of histological brain sections for 145 reproducible forebrain enhancers, resulting in a publicly accessible web-based data collection comprising more than 32,000 sections. We also used epigenomic analysis of human and mouse cortex tissue to directly compare the genome-wide enhancer architecture in these species. These data provide a primary resource for investigating gene regulatory mechanisms of telencephalon development and enable studies of the role of distant-acting enhancers in neurodevelopmental disorders.


Asunto(s)
Elementos de Facilitación Genéticos , Telencéfalo/metabolismo , Animales , Embrión de Mamíferos/metabolismo , Feto/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Telencéfalo/embriología , Transcriptoma , Factores de Transcripción p300-CBP/metabolismo
12.
Eur J Immunol ; 40(8): 2143-54, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20544728

RESUMEN

Bcl11b is a transcription factor that, within the hematopoietic system, is expressed specifically in T cells. Although Bcl11b is required for T-cell differentiation in newborn Bcl11b-null mice, and for positive selection in the adult thymus of mice bearing a T-cell-targeted deletion, the gene network regulated by Bcl11b in T cells is unclear. We report herein that Bcl11b is a bifunctional transcriptional regulator, which is required for the correct expression of approximately 1000 genes in CD4(+)CD8(+)CD3(lo) double-positive (DP) thymocytes. Bcl11b-deficient DP cells displayed a gene expression program associated with mature CD4(+)CD8(-) and CD4(-)CD8(+) single-positive (SP) thymocytes, including upregulation of key transcriptional regulators, such as Zbtb7b and Runx3. Bcl11b interacted with regulatory regions of many dysregulated genes, suggesting a direct role in the transcriptional regulation of these genes. However, inappropriate expression of lineage-associated genes did not result in enhanced differentiation, as deletion of Bcl11b in DP cells prevented development of SP thymocytes, and that of canonical NKT cells. These data establish Bcl11b as a crucial transcriptional regulator in thymocytes, in which Bcl11b functions to prevent the premature expression of genes fundamental to the SP and NKT cell differentiation programs.


Asunto(s)
Diferenciación Celular , Células Precursoras de Linfocitos T/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Antígenos CD4/biosíntesis , Antígenos CD8/biosíntesis , Diferenciación Celular/inmunología , Linaje de la Célula , Células Cultivadas , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ratones , Ratones Noqueados , Células Precursoras de Linfocitos T/citología , Unión Proteica , Elementos Reguladores de la Transcripción/inmunología , Proteínas Represoras/genética , Proteínas Represoras/inmunología , Timo/citología , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Activación Transcripcional/inmunología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/inmunología
13.
Proc Natl Acad Sci U S A ; 106(11): 4278-83, 2009 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-19251658

RESUMEN

The transcription factor Ctip2/Bcl11b plays essential roles in developmental processes of the immune and central nervous systems and skin. Here we show that Ctip2 also plays a key role in tooth development. Ctip2 is highly expressed in the ectodermal components of the developing tooth, including inner and outer enamel epithelia, stellate reticulum, stratum intermedium, and the ameloblast cell lineage. In Ctip2(-/-) mice, tooth morphogenesis appeared to proceed normally through the cap stage but developed multiple defects at the bell stage. Mutant incisors and molars were reduced in size and exhibited hypoplasticity of the stellate reticulum. An ameloblast-like cell population developed ectopically on the lingual aspect of mutant lower incisors, and the morphology, polarization, and adhesion properties of ameloblasts on the labial side of these teeth were severely disrupted. Perturbations of gene expression were also observed in the mandible of Ctip2(-/-) mice: expression of the ameloblast markers amelogenin, ameloblastin, and enamelin was down-regulated, as was expression of Msx2 and epiprofin, transcription factors implicated in the tooth development and ameloblast differentiation. These results suggest that Ctip2 functions as a critical regulator of epithelial cell fate and differentiation during tooth morphogenesis.


Asunto(s)
Ameloblastos/citología , Proteínas de Unión al ADN/fisiología , Odontogénesis , Proteínas Represoras/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Diferenciación Celular , Regulación hacia Abajo/genética , Desarrollo Embrionario , Células Epiteliales/citología , Mandíbula/crecimiento & desarrollo , Ratones , Ratones Noqueados , Diente/crecimiento & desarrollo , Factores de Transcripción/genética
14.
J Invest Dermatol ; 129(6): 1459-70, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19092943

RESUMEN

COUP-TF-interacting protein 2 (CTIP2; also known as Bcl11b) is a transcription factor that plays key roles in the development of the central nervous and immune systems. CTIP2 is also highly expressed in the developing epidermis, and at lower levels in the dermis and in adult skin. Analyses of mice harboring a germline deletion of CTIP2 revealed that the protein plays critical roles in skin during development, particularly in keratinocyte proliferation and late differentiation events, as well as in the development of the epidermal permeability barrier. At the core of all of these actions is a relatively large network of genes, described herein, that is regulated directly or indirectly by CTIP2. The analysis of conditionally null mice, in which expression of CTIP2 was ablated specifically in epidermal keratinocytes, suggests that CTIP2 functions in both cell and non-cell autonomous contexts to exert regulatory influence over multiple phases of skin development, including barrier establishment. Considered together, our results suggest that CTIP2 functions as a top-level regulator of skin morphogenesis.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/fisiología , Epidermis/metabolismo , Proteínas Represoras/biosíntesis , Proteínas Represoras/fisiología , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Supresoras de Tumor/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Dermis/metabolismo , Genotipo , Queratinocitos/citología , Queratinocitos/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Modelos Genéticos , Permeabilidad , Factores de Tiempo
15.
Gene Expr Patterns ; 7(7): 754-60, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17631058

RESUMEN

COUP-TF-interacting protein 2 (CTIP2), also known as Bcl11b, is a transcriptional regulatory protein that is highly expressed in and plays a critical role(s) during development of T lymphocytes and the central nervous system. We demonstrate herein that CTIP2 is also highly expressed in mouse skin during embryogenesis and in adulthood as revealed by immunohistochemical analyses. CTIP2 expression in the ectoderm was first detected at embryonic day 10.5 (E10.5), and became increasingly restricted to proliferating cells of the basal cell layer of the developing epidermis in later stages of fetal development and in adult skin. In addition, CTIP2 expression was also detected in some cells of the suprabasal layer of the developing epidermis, as well as in developing and mature hair follicles. Relatively fewer cells of the developing dermal component of skin were found to express CTIP2, and the adult dermis was devoid of CTIP2 expression. Some, but not all, of the cells present within hair follicle bulge were found to co-express CTIP2, keratin K15, but not CD34, indicating that a subset of K15(+) CD34(-) skin stem cells may express CTIP2. Considered together, these findings suggest that CTIP2 may play a role(s) in skin development and/or homeostasis.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica , Proteínas Represoras/biosíntesis , Piel/embriología , Proteínas Supresoras de Tumor/biosíntesis , Animales , Antígenos CD34/biosíntesis , Proliferación Celular , Epidermis/metabolismo , Inmunohistoquímica , Queratina-15/biosíntesis , Ratones , Ratones Endogámicos ICR , Linfocitos T/metabolismo , Factores de Tiempo
16.
J Biol Chem ; 281(43): 32272-83, 2006 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-16950772

RESUMEN

Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2 (CTIP2), also known as Bcl11b, is a transcriptional repressor that functions by direct, sequence-specific DNA binding activity or by recruitment to the promoter template by interaction with COUP-TF family members. CTIP2 is essential for both T cell development and axonal projections of corticospinal motor neurons in the central nervous system. However, little is known regarding the molecular mechanism(s) by which CTIP2 contributes to either process. CTIP2 complexes that were isolated from SK-N-MC neuroblastoma cells were found to harbor substantial histone deacetylase activity, which was likely conferred by the nucleosome remodeling and deacetylation (NuRD) complex. CTIP2 was found to associate with the NuRD complex through direct interaction with both RbAp46 and RbAp48, and components of the NuRD complex were found to be recruited to an artificial promoter template in a CTIP2-dependent manner in transfected cells. Finally, the NuRD complex and CTIP2 were found to co-occupy the promoter template of p57KIP2, a gene encoding a cyclin-dependent kinase inhibitor, and identified herein as a novel transcriptional target of CTIP2 in SK-N-MC cells. Therefore, it seems likely that the NuRD complex may be involved in transcriptional repression of CTIP2 target genes and contribute to the function(s) of CTIP2 within a neuronal context.


Asunto(s)
Factor de Transcripción COUP II/genética , Factor de Transcripción COUP II/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Histona Desacetilasas/metabolismo , Regiones Promotoras Genéticas , Sitios de Unión , Técnicas de Cultivo de Célula , Línea Celular , Inmunoprecipitación de Cromatina , Inhibidores Enzimáticos/farmacología , Genes Reporteros , Glutatión Transferasa/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , Luciferasas/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Neuroblastoma/metabolismo , Neuroblastoma/patología , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA