Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(30): 36190-36200, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34286582

RESUMEN

Embedding quantum dots (QDs) into an organic matrix of controllable order requires the identification of their structural characteristics. This analysis is necessary for the creation of anisotropic composites that are sensitive to external stimuli. We have studied the QD structures formed during the single-step synthesis of CdSe/ZnS QDs and their transformations after the initial ligand's substitution for another ligand. This single-step process leads to the formation of the core/shell structure. We detect the presence of two oleic acid residues ionically connected to Zn and Cd. At the same time, the amount of Cd oleate at the surface is very small. We observe the ligand exchange process at the surface of the core/shell QDs. The oleic acid residues are substituted by terphenyl-containing (TERPh-COOH) aromatic acid residues. The reaction between CdSe/ZnS carrying TOP and oleic acid residues ionically bound with QDs and terphenyl-containing acid leads to the coexistence of multiple ligands on the QD surface at a ratio of 11:6:33 for TOP/OA/TERPh-COOH.

2.
Opt Lett ; 46(5): 1189-1192, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649689

RESUMEN

In this Letter, we report on the circular anisotropy of third-harmonic (TH) generation in an array of silicon nanowires (SiNWs) of approximately 100 nm in diameter tilted to the crystalline silicon substrate at an angle of 45°. Numerical simulations of the scattering at the fundamental and TH frequencies of circularly polarized light by a single SiNW and an ansatz structure composed of 13 SiNWs used as a geometrical approximation of the real SiNW array indicate asymmetric scattering diagrams, which is a manifestation of the photonic spin Hall effect mediated by the synthetic gauge field arising due to the special guided-like mode structure in each SiNW. Despite strong light scattering in the SiNW array, the experimentally measured TH signal demonstrated significant dependence on the polarization state of incident radiation and the SiNW array spacial orientation in regard to the wave vector direction.

3.
Sensors (Basel) ; 20(17)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872209

RESUMEN

Modern trends in optical bioimaging require novel nanoproducts combining high image contrast with efficient treatment capabilities. Silicon nanoparticles are a wide class of nanoobjects with tunable optical properties, which has potential as contrasting agents for fluorescence imaging and optical coherence tomography. In this paper we report on developing a novel technique for fabricating silicon nanoparticles by means of picosecond laser ablation of porous silicon films and silicon nanowire arrays in water and ethanol. Structural and optical properties of these particles were studied using scanning electron and atomic force microscopy, Raman scattering, spectrophotometry, fluorescence, and optical coherence tomography measurements. The essential features of the fabricated silicon nanoparticles are sizes smaller than 100 nm and crystalline phase presence. Effective fluorescence and light scattering of the laser-ablated silicon nanoparticles in the visible and near infrared ranges opens new prospects of their employment as contrasting agents in biophotonics, which was confirmed by pilot experiments on optical imaging.


Asunto(s)
Terapia por Láser , Nanopartículas , Nanocables , Porosidad , Silicio
4.
Chemphyschem ; 16(5): 1071-8, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25728757

RESUMEN

The photoluminescence (PL) of CdSe quantum dots (QDs) that form stable nanocomposites with polymer liquid crystals (LCs) as smectic C hydrogen-bonded homopolymers from a family of poly[4-(n-acryloyloxyalkyloxy)benzoic acids] is reported. The matrix that results from the combination of these units with methoxyphenyl benzoate and cholesterol-containing units has a cholesteric structure. The exciton PL band of QDs in the smectic matrix is redshifted with respect to QDs in solution, whereas a blueshift is observed with the cholesteric matrix. The PL lifetimes and quantum yield in cholesteric nanocomposites are higher than those in smectic ones. This is interpreted in terms of a higher order of the smectic matrix in comparison to the cholesteric one. CdSe QDs in the ordered smectic matrix demonstrate a splitting of the exciton PL band and an enhancement of the photoinduced differential transmission. These results reveal the effects of the structure of polymer LC matrices on the optical properties of embedded QDs, which offer new possibilities for photonic applications of QD-LC polymer nanocomposites.

5.
Nat Commun ; 5: 4356, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-25014073

RESUMEN

Random lasers are a developing class of light sources that utilize a highly disordered gain medium as opposed to a conventional optical cavity. Although traditional random lasers often have a relatively broad emission spectrum, a random laser that utilizes vibration transitions via Raman scattering allows for an extremely narrow bandwidth, on the order of 10 cm(-1). Here we demonstrate the first experimental evidence of lasing via a Raman interaction in a bulk three-dimensional random medium, with conversion efficiencies on the order of a few percent. Furthermore, Monte Carlo simulations are used to study the complex spatial and temporal dynamics of nonlinear processes in turbid media. In addition to providing a large signal, characteristic of the Raman medium, the random Raman laser offers us an entirely new tool for studying the dynamics of gain in a turbid medium.


Asunto(s)
Rayos Láser , Espectrometría Raman/métodos , Simulación por Computador , Método de Montecarlo
6.
Nanoscale Res Lett ; 7(1): 524, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23009051

RESUMEN

We study the structure and optical properties of arrays of silicon nanowires (SiNWs) with a mean diameter of approximately 100 nm and length of about 1-25 µm formed on crystalline silicon (c-Si) substrates by using metal-assisted chemical etching in hydrofluoric acid solutions. In the middle infrared spectral region, the reflectance and transmittance of the formed SiNW arrays can be described in the framework of an effective medium with the effective refractive index of about 1.3 (porosity, approximately 75%), while a strong light scattering for wavelength of 0.3 ÷ 1 µm results in a decrease of the total reflectance of 1%-5%, which cannot be described in the effective medium approximation. The Raman scattering intensity under excitation at approximately 1 µm increases strongly in the sample with SiNWs in comparison with that in c-Si substrate. This effect is related to an increase of the light-matter interaction time due to the strong scattering of the excitation light in SiNW array. The prepared SiNWs are discussed as a kind of 'black silicon', which can be formed in a large scale and can be used for photonic applications as well as in molecular sensing.

7.
Opt Lett ; 31(21): 3152-4, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17041665

RESUMEN

Anisotropic photonic crystal structures consisting of birefringent porous silicon layers with alternating porosity were fabricated. The in-plane birefringence formed as a result of anisotropic etching in Si(110) results in unique multilayered structures with two distinct photonic bandgaps for orthogonal light polarizations. Nonlinear optical studies based on the third-harmonic generation from these structures demonstrate variation in the symmetry of the nonlinear optical response.


Asunto(s)
Silicio/química , Anisotropía , Birrefringencia , Luz , Porosidad , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...