Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Int J Biol Sci ; 20(6): 2008-2026, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617548

RESUMEN

Renal aging may lead to fibrosis and dysfunction, yet underlying mechanisms remain unclear. We explored whether deficiency of the Polycomb protein Bmi1 causes renal aging via DNA damage response (DDR) activation, inducing renal tubular epithelial cell (RTEC) senescence and epithelial-mesenchymal transition (EMT). Bmi1 knockout mice exhibited oxidative stress, DDR activation, RTEC senescence, senescence-associated secretory phenotype (SASP), and age-related fibrosis in kidneys. Bmi1 deficiency impaired renal structure and function, increasing serum creatinine/urea, reducing creatinine clearance, and decreasing cortical thickness and glomerular number. However, knockout of the serine-threonine kinase Chk2 alleviated these aging phenotypes. Transcriptomics identified transforming growth factor beta 1 (TGFß1) upregulation in Bmi1-deficient RTECs, but TGFß1 was downregulated upon Chk2 knockout. The tumor suppressor protein p53 transcriptionally activated TGFß1, promoting EMT in RTECs. Bmi1 knockout or oxidative stress (induced with H2O2) increased TGFß1 expression, and EMT in RTECs and was partly reversed by p53 inhibition. Together, Bmi1 deficiency causes oxidative stress and DDR-mediated RTEC senescence/SASP, thus activating p53 and TGFß1 to induce EMT and age-related fibrosis. However, blocking DDR (via Chk2 knockout) or p53 ameliorates these changes. Our study reveals mechanisms whereby Bmi1 preserves renal structure and function during aging by suppressing DDR and p53/TGFß1-mediated EMT. These pathways represent potential targets for detecting and attenuating age-related renal decline.


Asunto(s)
Peróxido de Hidrógeno , Proteína p53 Supresora de Tumor , Animales , Ratones , Envejecimiento , Creatinina , Daño del ADN/genética , Transición Epitelial-Mesenquimal/genética , Riñón , Estrés Oxidativo/genética , Complejo Represivo Polycomb 1/genética , Proteínas Proto-Oncogénicas/genética , Proteína p53 Supresora de Tumor/genética
2.
J Bone Miner Res ; 39(3): 231-240, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38477796

RESUMEN

Sedentary behavior (SB) or sitting is associated with multiple unfavorable health outcomes. Bone tissue responds to imposed gravitational and muscular strain with there being some evidence suggesting a causal link between SB and poor bone health. However, there are no population-based data on the longitudinal relationship between SB, bone change, and incidence of fragility fractures. This study aimed to examine the associations of sitting/SB (defined as daily sitting time), areal BMD (by DXA), and incident low trauma (fragility) osteoporotic fractures (excluding hands, feet, face, and head). We measured baseline (1995-7) and 10-yr self-reported SB, femoral neck (FN), total hip (TH), and lumbar spine (L1-L4) BMD in 5708 women and 2564 men aged 25 to 80+ yr from the population-based, nationwide, 9-center Canadian Multicentre Osteoporosis Study. Incident 10-yr fragility fracture data were obtained from 4624 participants; >80% of fractures were objectively confirmed by medical records or radiology reports. Vertebral fractures were confirmed by qualitative morphological methods. All analyses were stratified by sex. Multivariable regression models assessed SB-BMD relationships; Cox proportional models were fit for fracture risk. Models were adjusted for age, height, BMI, physical activity, and sex-specific covariates. Women in third/fourth quartiles had lower adjusted FN BMD versus women with the least SB (first quartile); women in the SB third quartile had lower adjusted TH BMD. Men in the SB third quartile had lower adjusted FN BMD than those in SB first quartile. Neither baseline nor stable 10-yr SB was related to BMD change nor to incident fragility fractures. Increased sitting (SB) in this large, population-based cohort was associated with lower baseline FN BMD. Stable SB was not associated with 10-yr BMD loss nor increased fragility fracture. In conclusion, habitual adult SB was not associated with subsequent loss of BMD nor increased risk of fracture.


The number of hours of sitting in a day (often called "sedentary behavior") is currently understood to be "bad for bone health" both because of increased bone loss and a higher risk for fractures. Very few studies in randomly sampled men and women from a whole population have consistently asked about hours of sitting and examined baseline bone density. Fewer still have compared hours of sitting and its changes over 10 yr with changes in bone density and the number of new fractures that occurred. The Canadian Multicentre Osteoporosis Study obtained sitting hours from 5708 women and 2564 men aged 25 to 80+ yr and compared it with the spine, total hip (TH), and femoral neck (FN) bone density values. The average sitting at 7.4 h in men was associated with slightly lower adjusted femoral neck bone density; in women, sitting 6.7 h/d was associated with slightly lower adjusted FN and TH bone density. Ten-year follow-up data (now in about 5000 people) showed no relationship between the slightly longer sitting (an increase of 18% in men and 22% in women) and bone loss or new bone fractures. In this large country-wide population-based study, hours of sitting each day were not associated with 10-yr BMD loss in women or men nor did sitting more associate with new bone fractures. These data are reassuring; women and men who walk regularly and have some moderate-vigorous physical activity each day, despite more sitting, do not seem to be at greater risk for osteoporosis.


Asunto(s)
Osteoporosis , Fracturas Osteoporóticas , Adulto , Masculino , Humanos , Femenino , Densidad Ósea , Conducta Sedentaria , Canadá/epidemiología , Osteoporosis/diagnóstico por imagen , Osteoporosis/epidemiología , Fracturas Osteoporóticas/epidemiología , Cuello Femoral/diagnóstico por imagen , Vértebras Lumbares
3.
J Bone Miner Res ; 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38477737

RESUMEN

Fracture risk increases with lower areal BMD (aBMD); however, aBMD-related estimate of risk may decrease with age. This may depend on technical limitations of 2-dimensional (2D) DXA which are reduced with 3D high-resolution peripheral quantitative computed tomography (HR-pQCT). Our aim was to examine whether the predictive utility of HR-pQCT measures with fracture varies with age. We analyzed associations of HR-pQCT measures at the distal radius and distal tibia with two outcomes: incident fractures and major osteoporotic fractures. We censored follow-up time at first fracture, death, last contact or 8 years after baseline. We estimated hazard ratios (HR) and 95%CI for the association between bone traits and fracture incidence across age quintiles. Among 6835 men and women (ages 40-96) with at least one valid baseline HR-pQCT scan who were followed prospectively for a median of 48.3 months, 681 sustained fractures. After adjustment for confounders, bone parameters at both the radius and tibia were associated with higher fracture risk. The estimated HRs for fracture did not vary significantly across age quintiles for any HR-pQCT parameter measured at either the radius or tibia. In this large cohort, the homogeneity of the associations between the HR-pQCT measures and fracture risk across age groups persisted for all fractures and for major osteoporotic fractures. The patterns were similar regardless of the HR-pQCT measure, the type of fracture, or the statistical models. The stability of the associations between HR-pQCT measures and fracture over a broad age range shows that bone deficits or low volumetric density remain major determinants of fracture risk regardless of age group. The lower risk for fractures across measures of aBMD in older adults in other studies may be related to factors which interfere with DXA but not with HR-pQCT measures.

4.
Osteoporos Int ; 35(3): 469-494, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228807

RESUMEN

The relationship between self-reported falls and fracture risk was estimated in an international meta-analysis of individual-level data from 46 prospective cohorts. Previous falls were associated with an increased fracture risk in women and men and should be considered as an additional risk factor in the FRAX® algorithm. INTRODUCTION: Previous falls are a well-documented risk factor for subsequent fracture but have not yet been incorporated into the FRAX algorithm. The aim of this study was to evaluate, in an international meta-analysis, the association between previous falls and subsequent fracture risk and its relation to sex, age, duration of follow-up, and bone mineral density (BMD). METHODS: The resource comprised 906,359 women and men (66.9% female) from 46 prospective cohorts. Previous falls were uniformly defined as any fall occurring during the previous year in 43 cohorts; the remaining three cohorts had a different question construct. The association between previous falls and fracture risk (any clinical fracture, osteoporotic fracture, major osteoporotic fracture, and hip fracture) was examined using an extension of the Poisson regression model in each cohort and each sex, followed by random-effects meta-analyses of the weighted beta coefficients. RESULTS: Falls in the past year were reported in 21.4% of individuals. During a follow-up of 9,102,207 person-years, 87,352 fractures occurred of which 19,509 were hip fractures. A previous fall was associated with a significantly increased risk of any clinical fracture both in women (hazard ratio (HR) 1.42, 95% confidence interval (CI) 1.33-1.51) and men (HR 1.53, 95% CI 1.41-1.67). The HRs were of similar magnitude for osteoporotic, major osteoporotic fracture, and hip fracture. Sex significantly modified the association between previous fall and fracture risk, with predictive values being higher in men than in women (e.g., for major osteoporotic fracture, HR 1.53 (95% CI 1.27-1.84) in men vs. HR 1.32 (95% CI 1.20-1.45) in women, P for interaction = 0.013). The HRs associated with previous falls decreased with age in women and with duration of follow-up in men and women for most fracture outcomes. There was no evidence of an interaction between falls and BMD for fracture risk. Subsequent risk for a major osteoporotic fracture increased with each additional previous fall in women and men. CONCLUSIONS: A previous self-reported fall confers an increased risk of fracture that is largely independent of BMD. Previous falls should be considered as an additional risk factor in future iterations of FRAX to improve fracture risk prediction.


Asunto(s)
Fracturas de Cadera , Fracturas Osteoporóticas , Masculino , Humanos , Femenino , Fracturas Osteoporóticas/epidemiología , Fracturas Osteoporóticas/etiología , Estudios Prospectivos , Medición de Riesgo , Estudios de Cohortes , Factores de Riesgo , Densidad Ósea , Fracturas de Cadera/etiología , Fracturas de Cadera/complicaciones
5.
J Am Coll Radiol ; 21(4): 633-639, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37805012

RESUMEN

BACKGROUND: Osteoporosis, characterized by loss of bone mineral density (BMD), is underscreened. Osteoporosis and low bone mass are diagnosed by a BMD T-score ≤ -2.5, and between -1.0 and -2.5, respectively, at the femoral neck or lumbar vertebrae (L1-4), using dual energy x-ray absorptiometry (DXA). The ability to estimate BMD at those anatomic sites from standard radiographs would enable opportunistic screening of low BMD (T-score < -1) in individuals undergoing x-ray for any clinical indication. METHODS: Radiographs of the lumbar spine, thoracic spine, chest, pelvis, hand, and knee, with a paired DXA acquired within 1 year, were obtained from community imaging centers (62,023 x-ray-DXA pairs of patients). A software program called Rho was developed that uses x-ray, age, and sex as inputs, and outputs a score of 1 to 10 that corresponds with the likelihood of low BMD. The program's performance was assessed using receiver-operating characteristic analyses in three independent test sets, as follows: patients from community imaging centers (n = 3,729; 83% female); patients in the Canadian Multicentre Osteoporosis Study (n = 1,780; 71% female); and patients in the Osteoarthritis Initiative (n = 591; 50% female). RESULTS: The areas under the receiver-operating characteristic curves were 0.89 (0.87-0.90), 0.87 (0.85-0.88), and 0.82 (0.79-0.85), respectively, and subset analyses showed similar results for each sex, body part, and race. CONCLUSION: Rho can opportunistically screen patients at risk of low BMD (at femoral neck or L1-4) from radiographs of the lumbar spine, thoracic spine, chest, pelvis, hand, or knee.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoporosis , Humanos , Femenino , Masculino , Rayos X , Canadá , Radiografía , Densidad Ósea , Osteoporosis/diagnóstico por imagen , Absorciometría de Fotón/métodos , Vértebras Lumbares/diagnóstico por imagen
7.
Nat Genet ; 55(8): 1277-1287, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37558884

RESUMEN

In this study, we leveraged the combined evidence of rare coding variants and common alleles to identify therapeutic targets for osteoporosis. We undertook a large-scale multiancestry exome-wide association study for estimated bone mineral density, which showed that the burden of rare coding alleles in 19 genes was associated with estimated bone mineral density (P < 3.6 × 10-7). These genes were highly enriched for a set of known causal genes for osteoporosis (65-fold; P = 2.5 × 10-5). Exome-wide significant genes had 96-fold increased odds of being the top ranked effector gene at a given GWAS locus (P = 1.8 × 10-10). By integrating proteomics Mendelian randomization evidence, we prioritized CD109 (cluster of differentiation 109) as a gene for which heterozygous loss of function is associated with higher bone density. CRISPR-Cas9 editing of CD109 in SaOS-2 osteoblast-like cell lines showed that partial CD109 knockdown led to increased mineralization. This study demonstrates that the convergence of common and rare variants, proteomics and CRISPR can highlight new bone biology to guide therapeutic development.


Asunto(s)
Predisposición Genética a la Enfermedad , Osteoporosis , Humanos , Secuenciación del Exoma , Osteoporosis/genética , Densidad Ósea/genética , Alelos , Factores de Transcripción/genética , Estudio de Asociación del Genoma Completo
8.
Aging Cell ; 22(9): e13912, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37365714

RESUMEN

Age-related osteoporosis is associated with increased oxidative stress and cellular senescence. Pyrroloquinoline quinone (PQQ) is a water-soluble vitamin-like compound that has strong antioxidant capacity; however, the effect and underlying mechanism of PQQ on aging-related osteoporosis remain unclear. The purpose of this study was to investigate whether dietary PQQ supplementation can prevent osteoporosis caused by natural aging, and the potential mechanism underlying PQQ antioxidant activity. Here, we found that when 6-month-old or 12-month-old wild-type mice were supplemented with PQQ for 12 months or 6 months, respectively, PQQ could prevent age-related osteoporosis in mice by inhibiting osteoclastic bone resorption and stimulating osteoblastic bone formation. Mechanistically, pharmmapper screening and molecular docking studies revealed that PQQ appears to bind to MCM3 and reduces its ubiquitination-mediated degradation; stabilized MCM3 then competes with Nrf2 for binding to Keap1, thus activating Nrf2-antioxidant response element (ARE) signaling. PQQ-induced Nrf2 activation inhibited bone resorption through increasing stress response capacity and transcriptionally upregulating fibrillin-1 (Fbn1), thus reducing Rankl production in osteoblast-lineage cells and decreasing osteoclast activation; as well, bone formation was stimulated by inhibiting osteoblastic DNA damage and osteocyte senescence. Furthermore, Nrf2 knockout significantly blunted the inhibitory effects of PQQ on oxidative stress, on increased osteoclast activity and on the development of aging-related osteoporosis. This study reveals the underlying mechanism of PQQ's strong antioxidant capacity and provides evidence for PQQ as a potential agent for clinical prevention and treatment of natural aging-induced osteoporosis.


Asunto(s)
Resorción Ósea , Osteoporosis , Ratones , Animales , Antioxidantes/metabolismo , Cofactor PQQ/farmacología , Cofactor PQQ/metabolismo , Cofactor PQQ/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Regulación hacia Arriba , Fibrilina-1/metabolismo , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Envejecimiento , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Resorción Ósea/tratamiento farmacológico
9.
J Orthop Translat ; 40: 13-26, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37200907

RESUMEN

Background: It has been demonstrated that vitamin D deficiency is associated with an increased risk of patients developing lumbar disc herniation. However, intervertebral disc degeneration caused by active vitamin D deficiency has not been reported. Thus, the purpose of this study was to e investigate the role and mechanism of 1,25-dihydroxyvitamin D (1,25(OH)2D) insufficiency in promoting intervertebral disc degeneration. Methods: The phenotypes of intervertebral discs were compared in wild-type mice and mice with heterozygous deletion of 1α-hydroxylase [1α(OH)ase+/-] at 8 mouths of age using iconography, histology and molecular biology. A mouse model that overexpressed Sirt1 in mesenchymal stem cells on a 1α(OH)ase+/- background (Sirt1Tg/1α(OH)ase+/-) was generated by crossing Prx1-Sirt1 transgenic mice with 1α(OH)ase+/- mice and comparing their intervertebral disc phenotypes with those of Sirt1Tg, 1α(OH)ase+/- and wild-type littermates at 8 months of age. A vitamin D receptor (VDR)-deficient cellular model was generated by knock-down of endogenous VDR using Ad-siVDR transfection into nucleus pulposus cells; VDR-deficient nucleus pulposus cells were then treated with or without resveratrol. The interactions between Sirt1 and acetylated p65, and p65 nuclear localization, were examined using co-immunoprecipitation, Western blots and immunofluorescence staining. VDR-deficient nucleus pulposus cells were also treated with 1,25(OH)2D3, or resveratrol or 1,25(OH)2D3 plus Ex527 (an inhibitor of Sirt1). Effects on Sirt1 expression, cell proliferation, cell senescence, extracellular matrix protein synthesis and degradation, nuclear factor-κB (NF-κB), and expression of inflammatory molecules, were examined, using immunofluorescence staining, Western blots and real-time RT-PCR. Results: 1,25(OH)2D insufficiency accelerated intervertebral disc degeneration by reducing extracellular matrix protein synthesis and enhancing extracellular matrix protein degradation with reduced Sirt1 expression in nucleus pulposus tissues. Overexpression of Sirt1 in MSCs protected against 1,25(OH)2D deficiency-induced intervertebral disc degeneration by decreasing acetylation and phosphorylation of p65 and inhibiting the NF-κB inflammatory pathway. VDR or resveratrol activated Sirt1 to deacetylate p65 and inhibit its nuclear translocation into nucleus pulposus cells. Knockdown of VDR decreased VDR expression and significantly reduced the proliferation and extracellular matrix protein synthesis of nucleus pulposus cells, significantly increased the senescence of nucleus pulposus cells and significantly downregulated Sirt1 expression, and upregulated matrix metallopeptidase 13 (MMP13), tumor necrosis factor-α (TNF-α) and interleukin 1ß (IL-1ß) expression; the ratios of acetylated and phosphorylated p65/p65 in nucleus pulposus cells were also increased. Treatment of nucleus pulposus cells with VDR reduction using 1,25(OH)2D3 or resveratrol partially rescued the degeneration phenotypes, by up-regulating Sirt1 expression and inhibiting NF-κB inflammatory pathway; these effects in nucleus pulposus cells were blocked by inhibition of Sirt1. Conclusion: Results from this study indicate that the 1,25(OH)2D/VDR pathway can prevent the degeneration of nucleus pulposus cells by inhibiting the NF-κB inflammatory pathway mediated by Sirt1.The Translational Potential of This Article: This study provides new insights into the use of 1,25(OH)2D3 to prevent and treat intervertebral disc degeneration caused by vitamin D deficiency.

10.
J Bone Miner Res ; 38(9): 1234-1244, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37132542

RESUMEN

Most fracture risk assessment tools use clinical risk factors combined with bone mineral density (BMD) to improve assessment of osteoporosis; however, stratifying fracture risk remains challenging. This study developed a fracture risk assessment tool that uses information about volumetric bone density and three-dimensional structure, obtained using high-resolution peripheral quantitative compute tomography (HR-pQCT), to provide an alternative approach for patient-specific assessment of fracture risk. Using an international prospective cohort of older adults (n = 6802) we developed a tool to predict osteoporotic fracture risk, called µFRAC. The model was constructed using random survival forests, and input predictors included HR-pQCT parameters summarizing BMD and microarchitecture alongside clinical risk factors (sex, age, height, weight, and prior adulthood fracture) and femoral neck areal BMD (FN aBMD). The performance of µFRAC was compared to the Fracture Risk Assessment Tool (FRAX) and a reference model built using FN aBMD and clinical covariates. µFRAC was predictive of osteoporotic fracture (c-index = 0.673, p < 0.001), modestly outperforming FRAX and FN aBMD models (c-index = 0.617 and 0.636, respectively). Removal of FN aBMD and all clinical risk factors, except age, from µFRAC did not significantly impact its performance when estimating 5-year and 10-year fracture risk. The performance of µFRAC improved when only major osteoporotic fractures were considered (c-index = 0.733, p < 0.001). We developed a personalized fracture risk assessment tool based on HR-pQCT that may provide an alternative approach to current clinical methods by leveraging direct measures of bone density and structure. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Fracturas Osteoporóticas , Humanos , Anciano , Adulto , Fracturas Osteoporóticas/diagnóstico por imagen , Estudios Prospectivos , Tomografía Computarizada por Rayos X , Densidad Ósea , Medición de Riesgo
11.
Int J Biol Sci ; 19(2): 610-624, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632467

RESUMEN

Emerging observational data suggest that vitamin D deficiency is associated with the onset and progression of knee osteoarthritis (OA). However, the relationship between vitamin D level and OA and the role of vitamin D supplementation in the prevention of knee OA are controversial. To address these issues, we analyzed the articular cartilage phenotype of 6- and 12-month-old wild-type and 1α(OH)ase-/- mice and found that 1,25(OH)2D deficiency accelerated the development of age-related spontaneous knee OA, including cartilage surface destruction, cartilage erosion, proteoglycan loss and cytopenia, increased OARSI score, collagen X and Mmp13 positive chondrocytes, and increased chondrocyte senescence with senescence-associated secretory phenotype (SASP). 1,25(OH)2D3 supplementation rescued all knee OA phenotypes of 1α(OH)ase-/- mice in vivo, and 1,25(OH)2D3 rescued IL-1ß-induced chondrocyte OA phenotypes in vitro, including decreased chondrocyte proliferation and cartilage matrix protein synthesis, and increased oxidative stress and cell senescence. We also demonstrated that VDR was expressed in mouse articular chondrocytes, and that VDR knockout mice exhibited knee OA phenotypes. Furthermore, we demonstrated that the down-regulation of Sirt1 in articular chondrocytes of 1α(OH)ase-/- mice was corrected by supplementing 1,25(OH)2D3 or overexpression of Sirt1 in mesenchymal stem cells (MSCs) and 1,25(OH)2D3 up-regulated Sirt1 through VDR mediated transcription. Finally, we demonstrated that overexpression of Sirt1 in MSCs rescued knee OA phenotypes in 1α(OH)ase-/- mice. Thus, we conclude that 1,25(OH)2D3, via VDR-mediated gene transcription, plays a key role in preventing the onset of aging-related knee OA in mouse models by up-regulating Sirt1, an aging-related gene that promotes articular chondrocyte proliferation and extracellular matrix protein synthesis, and inhibits senescence and SASP.


Asunto(s)
Envejecimiento , Cartílago Articular , Osteoartritis de la Rodilla , Sirtuina 1 , Deficiencia de Vitamina D , Vitamina D , Animales , Ratones , Envejecimiento/metabolismo , Cartílago Articular/metabolismo , Cartílago Articular/patología , Condrocitos/metabolismo , Condrocitos/patología , Regulación hacia Abajo , Osteoartritis de la Rodilla/complicaciones , Osteoartritis de la Rodilla/patología , Sirtuina 1/genética , Sirtuina 1/metabolismo , Vitamina D/metabolismo , Deficiencia de Vitamina D/complicaciones
12.
Free Radic Biol Med ; 195: 231-244, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36592659

RESUMEN

Increased oxidative stress and decreased osteoblastic bone formation contribute to estrogen deficiency-induced osteoporosis. However, the role and mechanism of estrogen-deficiency in regulating oxidative stress and osteoblastic activity remain unclear. Here, we showed that estrogen-deficient bone marrow stromal/stem cells (BMSCs) exhibited impaired capacity to combat stress, characterized by increased oxidative stress, shortened cell survival and reduced osteogenic differentiation and bone formation, which were due to a decrease of nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 re-activation induced by the pyrazinyl dithiolethione oltipraz significantly rescued the cell phenotype of estrogen-deficient BMSCs in vitro and ex vivo. Mechanistically, we found that 17ß-estradiol/ESR1 (Estrogen Receptor 1) facilitated Nrf2 accumulation, and activated its target genes by competing with Nrf2 for binding to Kelch-like ECH-associated protein 1 (Keap1) via ESR1 containing a highly conserved DLL motif. Of note, oltipraz, an Nrf2 activator, rescued ovariectomy-induced osteoporosis partly by inhibiting oxidative stress and promoting osteoblastic bone formation via Nrf2-induced antioxidant signaling activation and Tmem119 (transmembrane protein 119) upregulation. Conversely, Nrf2 knockout largely blocked the bone anabolic effect of 17ß-estradiol in vivo and ex vivo. This study provides insight into the mechanisms whereby estrogen prevents osteoporosis through promoting osteoblastic bone formation via Nrf2-mediated activation of antioxidant signaling and upregulation of Tmem119, and thus provides evidence for Nrf2 as a potential target for clinical prevention and treatment of menopause-related osteoporosis.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Osteoporosis , Femenino , Humanos , Antioxidantes/farmacología , Estradiol/farmacología , Estrógenos/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Osteogénesis/genética , Osteoporosis/tratamiento farmacológico , Osteoporosis/genética , Estrés Oxidativo , Regulación hacia Arriba
13.
Vitam Horm ; 121: 293-318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36707138

RESUMEN

Although several recent studies have shown that vitamin D supplementation beneficially decreases oxidative stress parameters, there is no consensus on this subject in humans. Thus the role of vitamin D supplementation has recently become a controversial topic because large intervention studies in humans have not shown significant benefits. These studies have indicated that supplementation with precursor forms of active vitamin D has no effect on all-cause mortality, cannot reduce the fracture risk of the elderly, cannot reduce the incidence of cancer or cardiovascular disease in the elderly, and cannot significantly reduce the incidence risk of diabetes in the elderly. However, a link between several age-related diseases and enhanced oxidative stress has been found in mice with insufficient or deficient 1,25-dihydroxyvitamin D (1,25(OH)2D), the active form of vitamin D, which indicates that reduced active vitamin D accelerates aging and age-related diseases by increasing oxidative stress. Furthermore, supplementation of exogenous 1,25(OH)2D3, or antioxidants, could dramatically postpone aging, prevent osteoporosis and spontaneous tumor development induced by 1,25(OH)2D insufficiency or deficiency, by inhibiting oxidative stress. Mechanistically, the antioxidative effects of 1,25(OH)2D3 are carried out via the vitamin D receptor (VDR) by activation of the Nrf2 oxidative stress response pathway though transcriptional or posttranscriptional activation of Nrf2 or transcriptional upregulation of Sirt1 and Bmi1 expression. Whether discrepancies between studies in humans and in mice reflect the different forms of vitamin D examined remains to be determined.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Vitamina D , Humanos , Ratones , Animales , Anciano , Vitamina D/farmacología , Vitamina D/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Vitaminas/farmacología , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Estrés Oxidativo , Envejecimiento , Antioxidantes/farmacología
14.
Osteoporos Int ; 34(2): 357-367, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36449036

RESUMEN

International variations in osteoporosis and fracture rates have been reported, with temporal trends differing between populations. We observed higher BMD and lower fracture prevalence in a recently recruited cohort compared to that of a cohort recruited 20 years ago, even after adjusting for multiple covariates. PURPOSE: We explored sex-specific differences in femoral neck bone mineral density (FN-BMD) and in prevalent major osteoporotic fractures (MOF) using two Canadian cohorts recruited 20 years apart. METHODS: We included men and women aged 50-85 years from the Canadian Multicentre Osteoporosis Study (CaMos, N = 6,479; 1995-1997) and the Canadian Longitudinal Study on Aging (CLSA, N = 19,534; 2012-2015). We created regression models to compare FN-BMD and fracture risk between cohorts, adjusting for important covariates. Among participants with prevalent MOF, we compared anti-osteoporosis medication use. RESULTS: Mean (SD) age in CaMos (65.4 years [8.6]) was higher than in CLSA (63.8 years [9.1]). CaMos participants had lower mean body mass index and higher prevalence of smoking (p < 0.001). Adjusted linear regression models (estimates [95%CI]) demonstrated lower FN-BMD in CaMos women (- 0.017 g/cm2 [- 0.021; - 0.014]) and men (- 0.006 g/cm2 [- 0.011; 0.000]), while adjusted odds ratios (95%CI) for prevalent MOF were higher in CaMos women (1.99 [1.71; 2.30]) and men (2.33 [1.82; 3.00]) compared to CLSA. In women with prevalent MOF, menopausal hormone therapy use was similar in both cohorts (43.3% vs 37.9%, p = 0.076), but supplements (32.0% vs 48.3%, p < 0.001) and bisphosphonate use (5.8% vs 17.3%, p < 0.001) were lower in CaMos. The proportion of men with MOF who received bisphosphonates was below 10% in both cohorts. CONCLUSION: Higher BMD and lower fracture prevalence were noted in the more recently recruited CLSA cohort compared to CaMos, even after adjusting for multiple covariates. We noted an increase in bisphosphonate use in the recent cohort, but it remained very low in men.


Asunto(s)
Osteoporosis , Fracturas Osteoporóticas , Masculino , Femenino , Humanos , Densidad Ósea , Estudios Longitudinales , Canadá/epidemiología , Osteoporosis/epidemiología , Fracturas Osteoporóticas/epidemiología , Fracturas Osteoporóticas/etiología , Envejecimiento
15.
Epigenomics ; 14(19): 1213-1228, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36325830

RESUMEN

Vitamin D regulates a plethora of physiological processes in the human body and has been proposed to exert several anticancer effects. Epigenetics plays an important role in regulating vitamin D actions. In this review, we highlight the recent advances in the understanding of different epigenetic factors such as lncRNAs, miRNAs, methylation and acetylation influenced by vitamin D and its downstream targets in colorectal cancer to find more potential therapeutic targets. We discuss how vitamin D exerts anticancer properties through interactions between the vitamin D receptor and genes (e.g., SLC30A10), the microenvironment, microbiota and other factors in colorectal cancer. Developing therapeutic approaches targeting the vitamin D signaling system will be aided by a better knowledge of the epigenetic impact of vitamin D.


Vitamin D regulates various physiological processes in the body and could have anticancer effects. These anticancer effects are the result of interactions between many factors such as genes, the environment around the tumors, bacteria in the intestine, etc. in colorectal cancer. Epigenetic factors, including a big network of different molecules in the body that could control our genes without changing DNA, also play a role in regulating vitamin D. This review summarizes the advances in the understanding of different epigenetic factors related to vitamin D and colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Epigenómica , Humanos , Vitamina D/uso terapéutico , Metilación de ADN , Epigénesis Genética , Vitaminas , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Microambiente Tumoral
16.
Osteoporos Int ; 33(12): 2637-2648, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36044061

RESUMEN

Most of the published epidemiology on osteoporosis is derived from White populations; still many countries have increasing ethno-culturally diverse populations, leading to gaps in the development of population-specific effective fracture prevention strategies. We describe differences in prevalent fracture and bone mineral density patterns in Canadians of different racial/ethnic backgrounds. INTRODUCTION: We described prevalent fracture and bone mineral density (BMD) patterns in Canadians by their racial/ethnic backgrounds. METHODS: For this cross-sectional analysis, we used the Canadian Longitudinal Study on Aging baseline data (2011-2015) of 22,091 randomly selected participants of Black, East Asian, South or Southeast Asian (SSEA) and White race/ethnic backgrounds, aged 45-85 years with available information on the presence or absence of self-reported prevalent low trauma fractures and femoral neck BMD (FNBMD) measurement. Logistic and linear regression models examined associations of race/ethnic background with fracture and FNBMD, respectively. Covariates included sex, age, height, body mass index (BMI), grip strength and physical performance score. RESULTS: We identified 11,166 women and 10,925 men. Self-reported race/ethnic backgrounds were: 139 Black, 205 East Asian, 269 SSEA and 21,478 White. White participants were older (mean 62.5 years) than the other groups (60.5 years) and had a higher BMI (28.0 kg/m2) than both Asian groups, but lower than the Black group. The population-weighted prevalence of falls was 10.0%, and that of low trauma fracture was 12.0% ranging from 3.3% (Black) to 12.3% (White), with Black and SSEA Canadians having lower adjusted odds ratios (aOR) of low trauma fractures than White Canadians (Black, aOR = 0.3 [95% confidence interval: 0.1-0.7]; SSEA, aOR = 0.5 [0.3-0.8]). The mean (SD) FNBMD varied between groups: Black, 0.907 g/cm2 (0.154); East Asian, 0.748 g/cm2 (0.119); SSEA, 0.769 g/cm2 (0.134); and White, 0.773 g/cm2 (0.128). Adjusted linear regressions suggested that Black and both Asian groups had higher FNBMD compared to White. CONCLUSION: Our results support the importance of characterizing bone health predictors in Canadians of different race/ethnic backgrounds to tailor the development of population-specific fracture prevention strategies.


Asunto(s)
Osteoporosis , Fracturas Osteoporóticas , Masculino , Femenino , Humanos , Estudios Transversales , Prevalencia , Estudios Longitudinales , Población Blanca , Canadá/epidemiología , Osteoporosis/complicaciones , Osteoporosis/epidemiología , Densidad Ósea , Fracturas Osteoporóticas/epidemiología , Envejecimiento
17.
Biomimetics (Basel) ; 7(3)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35892371

RESUMEN

Bone has a complex microenvironment formed by an extracellular matrix (ECM) composed mainly of mineralized type I collagen fibres. Bone ECM regulates signaling pathways important in the differentiation of osteoblast-lineage cells, necessary for bone mineralization and in preserving tissue architecture. Compared to conventional 2D cell cultures, 3D in vitro models may better mimic bone ECM and provide an environment to support osteoblastic differentiation. In this study, a biomimetic 3D osteoid-like dense collagen gel model was used to investigate the role of the nuclear protein menin plays in osteoblastic differentiation and matrix mineralization. Previous in vitro and in vivo studies have shown that when expressed at later stages of osteoblastic differentiation, menin modulates osteoblastogenesis and regulates bone mass in adult mice. To investigate the role of menin when expressed at earlier stages of the osteoblastic lineage, conditional knockout mice in which the Men1 gene is specifically deleted early (i.e., at the level of the pluripotent mesenchymal stem cell lineage), where generated and primary calvarial osteoblasts were cultured in plastically compressed dense collagen gels for 21 days. The proliferation, morphology and differentiation of isolated seeded primary calvarial osteoblasts from knockout (Prx1-Cre; Men1f/f) mice were compared to those isolated from wild-type (Men1f/f) mice. Primary calvarial osteoblasts from knockout and wild-type mice did not show differences in terms of proliferation. However, in comparison to wild-type cells, primary osteoblast cells derived from knockout mice demonstrated deficient mineralization capabilities and an altered gene expression profile when cultured in 3D dense collagen gels. In summary, these findings indicate that when expressed at earlier stages of osteoblast differentiation, menin is important in maintaining matrix mineralization in 3D dense collagen gel matrices, in vitro.

18.
Am J Transl Res ; 14(5): 3079-3091, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35702136

RESUMEN

OBJECTIVES: The goal of this study was to assess if endogenous 1,25(OH)2D deficiency enhanced, whereas exogenous 1,25(OH)2D3 supplementation alleviated alveolar bone loss and gingival inflammation induced by ligature-induced periodontitis. METHODS: A model of ligature-induced experimental periodontitis was generated in wild-type (WT) and Cyp27b1-knockout (KO) mice on a rescue diet (RD), and un-ligated genotype-matched littermates as control, or in WT mice on a normal diet (ND) with vehicle treatment or 1,25(OH)2D3 treatment, and un-ligated WT littermates as control. Alveolar bone mass and turnover, T cell infiltration and inflammatory cytokines in gingival tissues were examined. RESULTS: In WT mice, ligature-induced alveolar bone loss occurred by inhibiting alveolar bone formation. This was characterized by reduction of osteoblast numbers, alkaline phosphatase activity and type I collagen synthesis, as well as by augmentation of osteoclastic alveolar bone resorption and gingival inflammation, including increases of osteoclast numbers, inflammatory positive cells and up-regulation of mRNA expression levels of inflammatory cytokines. Alveolar bone destruction and gingival inflammation were more severe in diet-matched Cyp27b1-KO mice than in WT littermates on RD. Supplementation of exogenous 1,25(OH)2D3 alleviated alveolar bone loss and gingival inflammation in ligated WT mice on ND, but those parameters did not reach levels observed in un-ligated WT ones. CONCLUSIONS: Endogenous 1,25(OH)2D deficiency enhanced, whereas exogenous 1,25(OH)2D3 supplementation alleviated alveolar bone loss and gingival inflammation induced by ligature-induced periodontitis.

19.
JBMR Plus ; 6(5): e10622, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35509630

RESUMEN

Loss-of-function mutations in the MEN1 tumor-suppressor gene cause the multiple endocrine neoplasia type 1 syndrome. Menin, the MEN1 gene product, is expressed in many tissues, including bone, where its function remains elusive. We conditionally inactivated menin in mesenchymal stem cells (MSCs) using paired-related homeobox 1 (Prx1)-Cre and compared resultant skeletal phenotypes of Prx1-Cre;Men1 f/f menin-knockout mice (KO) and wild-type controls using in vivo and in vitro experimental approaches and mechanics simulation. Dual-energy X-ray absorptiometry demonstrated significantly reduced bone mineral density, and 3-dimensional micro-CT imaging revealed a decrease in trabecular bone volume, altered trabecular structure, and an increase in trabecular separation in KO mice at 6 and 9 months of age. Numbers of osteoblasts were unaltered, and dynamic histomorphometry demonstrated unaltered bone formation; however, osteoclast number and activity and receptor activator of NF-κB ligand/osteoprotegerin (RANKL/OPG) mRNA profiles were increased, supporting increased osteoclastogenesis and bone resorption. In vitro, proliferative capabilities of bone marrow stem cells and differentiation of osteoblasts and mineralization were unaltered; however, osteoclast generation was increased. Gross femur geometrical alterations observed included significant reductions in length and in mid-metaphyseal cross-sectional area. Atomic force microscopy demonstrated significant decreases in elasticity of both cortical and trabecular bone at the nanoscale, whereas three-point bending tests demonstrated a 30% reduction in bone stiffness; finite element analysis showed morphological changes of the femur microgeometry and a significantly diminished femur flexural rigidity. The biomechanical results demonstrated the detrimental outcome of the accelerated osteoclastic bone resorption. Our studies have a twofold implication; first, MEN1 deletion from MSCs can negatively regulate bone mass and bone biomechanics, and second, the experimental and computational biomechanical analyses employed in the present study should be applicable for improved phenotypic characterization of murine bone. Furthermore, our findings of critical menin function in bone may underpin the more severe skeletal phenotype found in hyperparathyroidism associated with loss-of-function of the MEN1 gene. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA