Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 693: 149390, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38128245

RESUMEN

In this work, we for the first time conducted a detailed study on the structure, dynamics, and hybridization properties of N-benzimidazole group-bearing phosphoramide benzoazole oligonucleotides (PABAOs) that we developed recently. By circular dichroism we established that the introduction of the modifications does not disrupt the B conformation of the DNA double helix. The formation of complexes is approximated by a two-state model. Complexes of PABAOs with native oligodeoxriboynucleotides form efficiently, and the introduction of such modifications reduces thermal stability of short duplexes (8-10 bp) by ∼5°Ð¡ per modification. Using UV-spectroscopy analysis, a neutral charge of the phosphate residue modified by the N-benzimidazole moiety in the pH range of 3-9.5 was found. The results confirm possible usefulness of PABAOs for both basic research and biomedical applications.


Asunto(s)
Oligonucleótidos , Fosforamidas , Oligonucleótidos/química , Desnaturalización de Ácido Nucleico , ADN/química , Hibridación de Ácido Nucleico , Conformación de Ácido Nucleico , Termodinámica , Dicroismo Circular
2.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835244

RESUMEN

Tyrosyl-DNA-phosphodiesterase 1 (TDP1) is a promising target for antitumor therapy; the use of TDP1 inhibitors with a topoisomerase 1 poison such as topotecan is a potential combination therapy. In this work, a novel series of 3,5-disubstituted thiazolidine-2,4-diones was synthesized and tested against TDP1. The screening revealed some active compounds with IC50 values less than 5 µM. Interestingly, compounds 20d and 21d were the most active, with IC50 values in the submicromolar concentration range. None of the compounds showed cytotoxicity against HCT-116 (colon carcinoma) and MRC-5 (human lung fibroblasts) cell lines in the 1-100 µM concentration range. Finally, this class of compounds did not sensitize cancer cells to the cytotoxic effect of topotecan.


Asunto(s)
Inhibidores de Fosfodiesterasa , Hidrolasas Diéster Fosfóricas , Tiazolidinedionas , Humanos , Modelos Moleculares , Monoterpenos/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Topotecan/farmacología , Tiazolidinedionas/farmacología
3.
J Funct Biomater ; 14(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36826869

RESUMEN

Fibrous polyurethane-based scaffolds have proven to be promising materials for the tissue engineering of implanted medical devices. Sterilization of such materials and medical devices is an absolutely essential step toward their medical application. In the presented work, we studied the effects of two sterilization methods (ethylene oxide treatment and electron beam irradiation) on the fibrous scaffolds produced from a polyurethane-gelatin blend. Scaffold structure and properties were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), infrared spectroscopy (FTIR), a stress-loading test, and a cell viability test with human fibroblasts. Treatment of fibrous polyurethane-based materials with ethylene oxide caused significant changes in their structure (formation of glued-like structures, increase in fiber diameter, and decrease in pore size) and mechanical properties (20% growth of the tensile strength, 30% decline of the maximal elongation). All sterilization procedures did not induce any cytotoxic effects or impede the biocompatibility of scaffolds. The obtained data determined electron beam irradiation to be a recommended sterilization method for electrospun medical devices made from polyurethane-gelatin blends.

4.
RSC Adv ; 12(11): 6416-6431, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35424594

RESUMEN

The development of approaches to the design of two- and three-dimensional self-assembled DNA-based nanostructures with a controlled shape and size is an essential task for applied nanotechnology, therapy, biosensing, and bioimaging. We conducted a comprehensive study on the formation of various complexes from a pair of oligonucleotides with two transposed complementary blocks that can be linked through a nucleotide or non-nucleotide linker. A methodology is proposed to prove the formation of a self-limited complex and to determine its molecularity. It is based on the "opening" of a self-limited complex with an oligonucleotide that effectively binds to a duplex-forming block. The complexes assembled from a pair of oligonucleotides with different block length and different linker sizes and types were investigated by theoretical analysis, several experimental methods (a gel shift assay, atomic force microscopy, and ultraviolet melting analysis), and molecular dynamics simulations. The results showed a variety of complexes formed by only a pair of oligonucleotides. Self-limited associates, concatemer complexes, or mixtures thereof can arise if we change the length of a duplex and loop-forming blocks in oligonucleotides or via introduction of overhangs and chemical modifications. We postulated basic principles of rational design of native self-limited DNA complexes of desired structure, shape, and molecularity. Our foundation makes self-limited complexes useful tools for nanotechnology, biological studies, and therapeutics.

5.
Biochem Biophys Res Commun ; 577: 110-115, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34509722

RESUMEN

Phosphoryl guanidine oligonucleotides (PGOs) are promising uncharged analogs of nucleic acids and are used in a variety of applications. The importance of hydration is frequently ignored during the design of modified nucleic acid probes. Such hydrophobic modifications (phosphoryl guanidine) are expected to have a significant impact on the structure and thermal stability of the affected oligo with complementary nucleic acids. Here we aimed to investigate (by the osmotic stress method) hydration changes upon the formation of a duplex of a PGO with complementary DNA. According to our results, the presence of phosphoryl guanidines in one or both strands of a duplex only minimally affects hydration alterations under crowding conditions. The secondary structure of native and modified duplexes did not change significantly in the presence of ethanol, ethylene glycol, polyethylene glycol 200, or polyethylene glycol 1000. After the addition of a cosolvent, the thermodynamic stability of the PGO complexes changed in the same manner as that seen in a corresponding DNA duplex. The findings reported here and our previous studies form the basis for efficient use of PGOs in basic research and a variety of applications.


Asunto(s)
ADN/química , Guanidina/química , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico/métodos , Oligonucleótidos/química , Termodinámica , Dicroismo Circular/métodos , ADN/genética , ADN/metabolismo , Etanol/química , Guanidina/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Desnaturalización de Ácido Nucleico , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , Ácidos Nucleicos/metabolismo , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Polietilenglicoles/química , Soluciones/química
6.
J Phys Chem B ; 125(11): 2841-2855, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33724825

RESUMEN

Phosphoryl guanidine oligonucleotides (PGOs) are promising tools for biological research and development of biosensors and therapeutics. We performed structural and hybridization analyses of octa-, deca-, and dodecamers with all phosphate residues modified by 1,3-dimethylimidazolidine-2-imine moieties. Similarity of the B-form double helix between native and modified duplexes was noted. In PGO duplexes, we detected a decrease in the proportion of C2'-endo and an increased proportion of C1'-exo sugar conformations of the modified chain. Applicability of the two-state model to denaturation transition of all studied duplexes was proved for the first time. Sequence-dependent effects of this modification on hybridization properties were observed. The thermal stability of PGO complexes is almost native at 100 mM NaCl and slightly increases with decreasing ionic strength. An increase in water activity and dramatic changes in interaction with cations and in solvation of PGOs and their duplexes were noted, resulting in slight elevation of the melting temperature after an ionic-strength decrease from 1 M NaCl down to deionized water. Decreased binding of sodium ions and decreased water solvation were documented for PGOs and their duplexes. In contrast to DNA, the PGO duplex formation leads to a release of several cations. The water shell is significantly more disordered near PGOs and their complexes. Nevertheless, changes in solvation during the formation of native and PGO complexes are similar and indicate that it is possible to develop models for predictive calculations of the thermodynamic properties of phosphoryl guanidine oligomers. Our results may help devise an approach for the rational design of PGOs as novel improved molecular probes and tools for many modern methods involving oligonucleotides.


Asunto(s)
Oligodesoxirribonucleótidos , Fosfatos , Guanidina , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Oligonucleótidos , Termodinámica
7.
J Phys Chem B ; 123(50): 10571-10581, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31714087

RESUMEN

Methylenecarboxamide (glycine) morpholine oligomers (gMOs) with a modified backbone are new and promising nucleic acid analogues. In this work, a combination of circular dichroism spectroscopy, optical melting, and molecular dynamics simulations was used to investigate hybridization properties of gMOs, as well as the structure and dynamics of their tandem complexes with DNA and RNA. It was shown that the structure of nucleic acids in modified complexes is similar to that of the fully native analogues. The energies of binding and cooperative interactions at the helix-helix interface in the nick were determined experimentally and by computer simulation analysis. Here, we found for the first time, the possibility to determine and predict precisely the thermodynamic parameters of complementary complex formation using the original experimental and computer simulation approaches. It was shown that the use of simulation data in the explicit solvent and the molecular mechanics Poisson-Boltzmann (or generalized Born) surface area methods for the calculation of the hybridization enthalpy makes it possible to evaluate the thermal stability of DNA and gMO tandem duplexes with DNA or RNA with an unexpectedly high accuracy. We found that at high ionic strength and neutral pH, the observed thermal stability of the gMO/RNA tandem complex is similar to that of DNA/DNA and lower than that of gMO/DNA which is close to that of DNA/RNA.


Asunto(s)
ADN/química , Glicina/química , Simulación de Dinámica Molecular , Morfolinas/química , ARN/química , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico , Hibridación de Ácido Nucleico , Concentración Osmolar
8.
Molecules ; 24(16)2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31408975

RESUMEN

Intrinsically disordered proteins play a central role in dynamic regulatory and assembly processes in the cell. Recently, a human κ-casein proteolytic fragment called lactaptin (8.6 kDa) was found to induce apoptosis of human breast adenocarcinoma MCF-7 and MDA-MB-231 cells with no cytotoxic activity toward normal cells. Earlier, we had designed some recombinant analogs of lactaptin and compared their biological activity. Among these analogs, RL2 has the highest antitumor activity, but the amino acid residues and secondary structures that are responsible for RL2's activity remain unclear. To elucidate the structure-activity relations of RL2, we studied the structural and aggregation features of this fairly large intrinsically disordered fragment of human milk κ-casein by a combination of physicochemical methods: NMR, paramagnetic relaxation enhancement (PRE), Electron Paramagnetic Resonance (EPR), circular dichroism, dynamic light scattering, atomic force microscopy, and a cytotoxic activity assay. It was found that in solution, RL2 exists as stand-alone monomeric particles and large aggregates. Whereas the disulfide-bonded homodimer turned out to be more prone to assembly into large aggregates, the monomer predominantly forms single particles. NMR relaxation analysis of spin-labeled RL2 showed that the RL2 N-terminal region, which is essential not only for multimerization of the peptide but also for its proapoptotic action on cancer cells, is more ordered than its C-terminal counterpart and contains a site with a propensity for α-helical secondary structure.


Asunto(s)
Antineoplásicos/química , Caseínas/química , Péptidos de Penetración Celular/química , Proteínas Intrínsecamente Desordenadas/química , Secuencia de Aminoácidos , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Caseínas/biosíntesis , Caseínas/genética , Caseínas/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/biosíntesis , Péptidos de Penetración Celular/genética , Péptidos de Penetración Celular/farmacología , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/biosíntesis , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/farmacología , Células MCF-7 , Agregado de Proteínas/genética , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Relación Estructura-Actividad
9.
Biophys Chem ; 234: 24-33, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29407768

RESUMEN

The development of new derivatives and analogues of nucleic acids for the purposes of molecular biology, biotechnology, gene diagnostics, and medicine has been a hotspot for the last two decades. Methylenecarboxamide (glycine) morpholine oligomer analogues (gM) seem to be promising therapeutic candidates because of the ability to form sequence specific complexes with DNA and RNA. In this paper we describe new approaches to the determination of thermodynamic parameters for hybridization of tandem oligonucleotide complexes with the complementary template. It makes possible to determine changes in enthalpy and entropy corresponding to the binding of an individual oligomer with the template, and to the formation of cooperative contact at the helix-helix interface of two neighboring duplex fragments (in the nick). We have experimentally analyzed the series of model tandem complexes of different length at various oligomer concentrations, ionic strength, and pH. The analysis of thermodynamic parameters of complex formation for native and modified oligomers revealed higher Gibbs free energy values of hybridization and cooperative interaction of morpholine-containing complexes at the helix-helix interface under standard conditions (1M NaCl, pH7.2). Further comparative analysis of the hybridization properties of modified oligomers at ionic strength and pH allows us to determine the charge state of the morpholine backbone and the thermodynamic origin of the effects observed. It was found that the decrease in pH to 5.5 led to the protonation of internal morpholine nitrogens. The obtained results prove the veracity of the proposed model and the possibility to evaluate thermodynamic parameters of short native and modified oligomers with high accuracy.


Asunto(s)
Hibridación de Ácido Nucleico , Oligonucleótidos/química , Termodinámica , Alcadienos , Desoxirribosa , Glicina , Modelos Moleculares , Morfolinas , Concentración Osmolar , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...