Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 226: 111625, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34655962

RESUMEN

For some cancer subtypes, such as triple-negative breast cancer, there are no specific therapies, which leads to a poor prognosis associated with invasion and metastases. Ruthenium complexes have been developed to act in all steps of tumor growth and its progression. In this study, we investigated the effects of Ruthenium (II) complexes coupled to the amino acids methionine (RuMet) and tryptophan (RuTrp) on the induction of cell death, clonogenic survival ability, inhibition of angiogenesis, and migration of MDA-MB-231 cells (human triple-negative breast cancer). The study also demonstrated that the RuMet and RuTrp complexes induce cell cycle blockage and apoptosis of MDA-MB-231 cells, as evidenced by an increase in the number of Annexin V-positive cells, p53 phosphorylation, caspase 3 activation, and poly(ADP-ribose) polymerase cleavage. Moreover, morphological changes and loss of mitochondrial membrane potential were detected. The RuMet and RuTrp complexes induced DNA damage probably due to reactive oxygen species production related to mitochondrial membrane depolarization. Therefore, the RuMet and RuTrp complexes acted directly on breast tumor cells, leading to cell death and inhibiting their metastatic potential; this reveals the potential therapeutic action of these drugs.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Complejos de Coordinación , Metionina/química , Rubidio/química , Triptófano/química , Animales , Apoptosis/efectos de los fármacos , Células 3T3 BALB , Neoplasias de la Mama/metabolismo , Chlorocebus aethiops , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Femenino , Humanos , Ratones , Proteínas de Neoplasias/metabolismo , Células Vero
2.
PLoS Negl Trop Dis ; 8(12): e3384, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25521296

RESUMEN

BACKGROUND: Infection with the protozoan Trypanosoma cruzi manifests in mammals as Chagas heart disease. The treatment available for chagasic cardiomyopathy is unsatisfactory. METHODS/PRINCIPAL FINDINGS: To study the disease pathology and its inhibition, we employed a syngeneic chicken model refractory to T. cruzi in which chickens hatched from T. cruzi inoculated eggs retained parasite kDNA (1.4 kb) minicircles. Southern blotting with EcoRI genomic DNA digests revealed main 18 and 20 kb bands by hybridization with a radiolabeled minicircle sequence. Breeding these chickens generated kDNA-mutated F1, F2, and F3 progeny. A targeted-primer TAIL-PCR (tpTAIL-PCR) technique was employed to detect the kDNA integrations. Histocompatible reporter heart grafts were used to detect ongoing inflammatory cardiomyopathy in kDNA-mutated chickens. Fluorochromes were used to label bone marrow CD3+, CD28+, and CD45+ precursors of the thymus-dependent CD8α+ and CD8ß+ effector cells that expressed TCRγδ, vß1 and vß2 receptors, which infiltrated the adult hearts and the reporter heart grafts. CONCLUSIONS/SIGNIFICANCE: Genome modifications in kDNA-mutated chickens can be associated with disruption of immune tolerance to compatible heart grafts and with rejection of the adult host's heart and reporter graft, as well as tissue destruction by effector lymphocytes. Autoimmune heart rejection was largely observed in chickens with kDNA mutations in retrotransposons and in coding genes with roles in cell structure, metabolism, growth, and differentiation. Moreover, killing the sick kDNA-mutated bone marrow cells with cytostatic and anti-folate drugs and transplanting healthy marrow cells inhibited heart rejection. We report here for the first time that healthy bone marrow cells inhibited heart pathology in kDNA+ chickens and thus prevented the genetically driven clinical manifestations of the disease.


Asunto(s)
Enfermedades Autoinmunes/prevención & control , Trasplante de Médula Ósea , Cardiomiopatía Chagásica/prevención & control , Enfermedad de Chagas/terapia , Animales , Apoptosis , Pollos/genética , ADN de Cinetoplasto/genética , Rechazo de Injerto , Inmunización , Mutación , Miocardio/patología , Trypanosoma cruzi/genética , Trypanosoma cruzi/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...