Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 11818, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087400

RESUMEN

Increased proteolytic activity has been widely associated with skeletal muscle atrophy. However, elevated proteolysis is also critical for the maintenance of cellular homeostasis by disposing cytotoxic proteins and non-functioning organelles. We recently demonstrated that exercise activates autophagy and re-establishes proteostasis in cardiac diseases. Here, we characterized the impact of exercise on skeletal muscle autophagy and proteostasis in a model of neurogenic myopathy induced by sciatic nerve constriction in rats. Neurogenic myopathy, characterized by progressive atrophy and impaired contractility, was paralleled by accumulation of autophagy-related markers and loss of acute responsiveness to both colchicine and chloroquine. These changes were correlated with elevated levels of damaged proteins, chaperones and pro-apoptotic markers compared to control animals. Sustained autophagy inhibition using chloroquine in rats (50 mg.kg-1.day-1) or muscle-specific deletion of Atg7 in mice was sufficient to impair muscle contractility in control but not in neurogenic myopathy, suggesting that dysfunctional autophagy is critical in skeletal muscle pathophysiology. Finally, 4 weeks of aerobic exercise training (moderate treadmill running, 5x/week, 1 h/day) prior to neurogenic myopathy improved skeletal muscle autophagic flux and proteostasis. These changes were followed by spared muscle mass and better contractility properties. Taken together, our findings suggest the potential value of exercise in maintaining skeletal muscle proteostasis and slowing down the progression of neurogenic myopathy.


Asunto(s)
Autofagia/fisiología , Enfermedades Neuromusculares/fisiopatología , Condicionamiento Físico Animal/fisiología , Proteostasis/fisiología , Animales , Antirreumáticos/farmacología , Autofagia/genética , Cloroquina/farmacología , Masculino , Ratones Noqueados , Ratones Transgénicos , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatología , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/metabolismo , Proteolisis , Proteostasis/genética , Ratas Sprague-Dawley
2.
Autophagy ; 13(8): 1304-1317, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28598232

RESUMEN

We previously reported that facilitating the clearance of damaged mitochondria through macroautophagy/autophagy protects against acute myocardial infarction. Here we characterize the impact of exercise, a safe strategy against cardiovascular disease, on cardiac autophagy and its contribution to mitochondrial quality control, bioenergetics and oxidative damage in a post-myocardial infarction-induced heart failure animal model. We found that failing hearts displayed reduced autophagic flux depicted by accumulation of autophagy-related markers and loss of responsiveness to chloroquine treatment at 4 and 12 wk after myocardial infarction. These changes were accompanied by accumulation of fragmented mitochondria with reduced O2 consumption, elevated H2O2 release and increased Ca2+-induced mitochondrial permeability transition pore opening. Of interest, disruption of autophagic flux was sufficient to decrease cardiac mitochondrial function in sham-treated animals and increase cardiomyocyte toxicity upon mitochondrial stress. Importantly, 8 wk of exercise training, starting 4 wk after myocardial infarction at a time when autophagy and mitochondrial oxidative capacity were already impaired, improved cardiac autophagic flux. These changes were followed by reduced mitochondrial number:size ratio, increased mitochondrial bioenergetics and better cardiac function. Moreover, exercise training increased cardiac mitochondrial number, size and oxidative capacity without affecting autophagic flux in sham-treated animals. Further supporting an autophagy mechanism for exercise-induced improvements of mitochondrial bioenergetics in heart failure, acute in vivo inhibition of autophagic flux was sufficient to mitigate the increased mitochondrial oxidative capacity triggered by exercise in failing hearts. Collectively, our findings uncover the potential contribution of exercise in restoring cardiac autophagy flux in heart failure, which is associated with better mitochondrial quality control, bioenergetics and cardiac function.


Asunto(s)
Autofagia , Insuficiencia Cardíaca/patología , Mitocondrias/metabolismo , Animales , Autofagia/genética , Línea Celular , Supervivencia Celular , Regulación hacia Abajo/genética , Masculino , Ratones , Mitocondrias/ultraestructura , Dinámicas Mitocondriales , Condicionamiento Físico Animal , Ratas Wistar
3.
Int J Cardiol ; 179: 129-38, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25464432

RESUMEN

BACKGROUND/OBJECTIVES: We previously demonstrated that reducing cardiac aldehydic load by aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme responsible for metabolizing the major lipid peroxidation product, protects against acute ischemia/reperfusion injury and chronic heart failure. However, time-dependent changes in ALDH2 profile, aldehydic load and mitochondrial bioenergetics during progression of post-myocardial infarction (post-MI) cardiomyopathy are unknown and should be established to determine the optimal time window for drug treatment. METHODS: Here we characterized cardiac ALDH2 activity and expression, lipid peroxidation, 4-hydroxy-2-nonenal (4-HNE) adduct formation, glutathione pool and mitochondrial energy metabolism and H2O2 release during the 4 weeks after permanent left anterior descending (LAD) coronary artery occlusion in rats. RESULTS: We observed a sustained disruption of cardiac mitochondrial function during the progression of post-MI cardiomyopathy, characterized by >50% reduced mitochondrial respiratory control ratios and up to 2 fold increase in H2O2 release. Mitochondrial dysfunction was accompanied by accumulation of cardiac and circulating lipid peroxides and 4-HNE protein adducts and down-regulation of electron transport chain complexes I and V. Moreover, increased aldehydic load was associated with a 90% reduction in cardiac ALDH2 activity and increased glutathione pool. Further supporting an ALDH2 mechanism, sustained Alda-1 treatment (starting 24h after permanent LAD occlusion surgery) prevented aldehydic overload, mitochondrial dysfunction and improved ventricular function in post-MI cardiomyopathy rats. CONCLUSION: Taken together, our findings demonstrate a disrupted mitochondrial metabolism along with an insufficient cardiac ALDH2-mediated aldehyde clearance during the progression of ventricular dysfunction, suggesting a potential therapeutic value of ALDH2 activators during the progression of post-myocardial infarction cardiomyopathy.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Benzamidas/uso terapéutico , Benzodioxoles/uso terapéutico , Cardiomiopatías/metabolismo , Progresión de la Enfermedad , Proteínas Mitocondriales/metabolismo , Infarto del Miocardio/metabolismo , Aldehído Deshidrogenasa Mitocondrial , Aldehídos/metabolismo , Animales , Benzamidas/farmacología , Benzodioxoles/farmacología , Cardiomiopatías/tratamiento farmacológico , Masculino , Infarto del Miocardio/tratamiento farmacológico , Ratas , Ratas Wistar
4.
Cardiovasc Res ; 103(4): 498-508, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24817685

RESUMEN

AIMS: We previously demonstrated that pharmacological activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) protects the heart against acute ischaemia/reperfusion injury. Here, we determined the benefits of chronic activation of ALDH2 on the progression of heart failure (HF) using a post-myocardial infarction model. METHODS AND RESULTS: We showed that a 6-week treatment of myocardial infarction-induced HF rats with a selective ALDH2 activator (Alda-1), starting 4 weeks after myocardial infarction at a time when ventricular remodelling and cardiac dysfunction were present, improved cardiomyocyte shortening, cardiac function, left ventricular compliance and diastolic function under basal conditions, and after isoproterenol stimulation. Importantly, sustained Alda-1 treatment showed no toxicity and promoted a cardiac anti-remodelling effect by suppressing myocardial hypertrophy and fibrosis. Moreover, accumulation of 4-hydroxynonenal (4-HNE)-protein adducts and protein carbonyls seen in HF was not observed in Alda-1-treated rats, suggesting that increasing the activity of ALDH2 contributes to the reduction of aldehydic load in failing hearts. ALDH2 activation was associated with improved mitochondrial function, including elevated mitochondrial respiratory control ratios and reduced H2O2 release. Importantly, selective ALDH2 activation decreased mitochondrial Ca(2+)-induced permeability transition and cytochrome c release in failing hearts. Further supporting a mitochondrial mechanism for ALDH2, Alda-1 treatment preserved mitochondrial function upon in vitro aldehydic load. CONCLUSIONS: Selective activation of mitochondrial ALDH2 is sufficient to improve the HF outcome by reducing the toxic effects of aldehydic overload on mitochondrial bioenergetics and reactive oxygen species generation, suggesting that ALDH2 activators, such as Alda-1, have a potential therapeutic value for treating HF patients.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Insuficiencia Cardíaca/enzimología , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Remodelación Ventricular/fisiología , Aldehído Deshidrogenasa Mitocondrial , Animales , Insuficiencia Cardíaca/fisiopatología , Masculino , Contracción Miocárdica/fisiología , Miocitos Cardíacos/enzimología , Ratas Wistar , Función Ventricular/fisiología
5.
Food Chem Toxicol ; 62: 107-19, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23978413

RESUMEN

Reactive oxygen and nitrogen species regulate a wide array of signaling pathways that governs cardiovascular physiology. However, oxidant stress resulting from disrupted redox signaling has an adverse impact on the pathogenesis and progression of cardiovascular diseases. In this review, we address how redox signaling and oxidant stress affect the pathophysiology of cardiovascular diseases such as ischemia-reperfusion injury, hypertension and heart failure. We also summarize the benefits of exercise training in tackling the hyperactivation of cellular oxidases and mitochondrial dysfunction seen in cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Ejercicio Físico , Estrés Oxidativo , Transducción de Señal , Antioxidantes/metabolismo , Ejercicio Físico/fisiología , Humanos , Mitocondrias/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...