Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Microbiol ; 26(1): e16557, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38173306

RESUMEN

Marine snow and other particles are abundant in estuaries, where they drive biogeochemical transformations and elemental transport. Particles range in size, thereby providing a corresponding gradient of habitats for marine microorganisms. We used standard normalized amplicon sequencing, verified with microscopy, to characterize taxon-specific microbial abundances, (cells per litre of water and per milligrams of particles), across six particle size classes, ranging from 0.2 to 500 µm, along the main stem of the Chesapeake Bay estuary. Microbial communities varied in salinity, oxygen concentrations, and particle size. Many taxonomic groups were most densely packed on large particles (in cells/mg particles), yet were primarily associated with the smallest particle size class, because small particles made up a substantially larger portion of total particle mass. However, organisms potentially involved in methanotrophy, nitrite oxidation, and sulphate reduction were found primarily on intermediately sized (5-180 µm) particles, where species richness was also highest. All abundant ostensibly free-living organisms, including SAR11 and Synecococcus, appeared on particles, albeit at lower abundance than in the free-living fraction, suggesting that aggregation processes may incorporate them into particles. Our approach opens the door to a more quantitative understanding of the microscale and macroscale biogeography of marine microorganisms.


Asunto(s)
Bahías , Microbiota , Tamaño de la Partícula , Salinidad , Oxígeno/análisis , Estuarios
2.
Sci Adv ; 8(21): eabm7826, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35622915

RESUMEN

Among the earliest consequences of climate change are extreme weather and rising sea levels-two challenges to which coastal environments are particularly vulnerable. Often found in coastal settings are microbial mats-complex, stratified microbial ecosystems that drive massive nutrient fluxes through biogeochemical cycles and have been important constituents of Earth's biosphere for eons. Little Ambergris Cay, in the Turks and Caicos Islands, supports extensive mats that vary sharply with relative water level. We characterized the microbial communities across this variation to understand better the emerging threat of sea level rise. In September 2017, the eyewall of category 5 Hurricane Irma transited the island. We monitored the impact and recovery from this devastating storm event. New mat growth proceeded rapidly, with patterns suggesting that storm perturbation may facilitate the adaptation of these ecosystems to changing sea level. Sulfur cycling, however, displayed hysteresis, stalling for >10 months after the hurricane and likely altering carbon storage potential.

3.
Geobiology ; 20(1): 60-78, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34331395

RESUMEN

The sedimentary pyrite sulfur isotope (δ34 S) record is an archive of ancient microbial sulfur cycling and environmental conditions. Interpretations of pyrite δ34 S signatures in sediments deposited in microbial mat ecosystems are based on studies of modern microbial mat porewater sulfide δ34 S geochemistry. Pyrite δ34 S values often capture δ34 S signatures of porewater sulfide at the location of pyrite formation. However, microbial mats are dynamic environments in which biogeochemical cycling shifts vertically on diurnal cycles. Therefore, there is a need to study how the location of pyrite formation impacts pyrite δ34 S patterns in these dynamic systems. Here, we present diurnal porewater sulfide δ34 S trends and δ34 S values of pyrite and iron monosulfides from Middle Island Sinkhole, Lake Huron. The sediment-water interface of this sinkhole hosts a low-oxygen cyanobacterial mat ecosystem, which serves as a useful location to explore preservation of sedimentary pyrite δ34 S signatures in early Earth environments. Porewater sulfide δ34 S values vary by up to ~25‰ throughout the day due to light-driven changes in surface microbial community activity that propagate downwards, affecting porewater geochemistry as deep as 7.5 cm in the sediment. Progressive consumption of the sulfate reservoir drives δ34 S variability, instead of variations in average cell-specific sulfate reduction rates and/or sulfide oxidation at different depths in the sediment. The δ34 S values of pyrite are similar to porewater sulfide δ34 S values near the mat surface. We suggest that oxidative sulfur cycling and other microbial activity promote pyrite formation in and immediately adjacent to the microbial mat and that iron geochemistry limits further pyrite formation with depth in the sediment. These results imply that primary δ34 S signatures of pyrite deposited in organic-rich, iron-poor microbial mat environments capture information about microbial sulfur cycling and environmental conditions at the mat surface and are only minimally affected by deeper sedimentary processes during early diagenesis.


Asunto(s)
Cianobacterias , Microbiota , Sedimentos Geológicos/química , Hierro/química , Oxígeno , Sulfuros/química , Isótopos de Azufre/análisis
4.
Nat Commun ; 12(1): 3037, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031392

RESUMEN

Microbialites accrete where environmental conditions and microbial metabolisms promote lithification, commonly through carbonate cementation. On Little Ambergris Cay, Turks and Caicos Islands, microbial mats occur widely in peritidal environments above ooid sand but do not become lithified or preserved. Sediment cores and porewater geochemistry indicated that aerobic respiration and sulfide oxidation inhibit lithification and dissolve calcium carbonate sand despite widespread aragonite precipitation from platform surface waters. Here, we report that in tidally pumped environments, microbial metabolisms can negate the effects of taphonomically-favorable seawater chemistry on carbonate mineral saturation and microbialite development.


Asunto(s)
Compuestos de Calcio/química , Ecosistema , Óxidos/química , Arena/química , Arena/microbiología , Carbonato de Calcio/metabolismo , Carbonatos , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Microbiota , Minerales , Agua de Mar/química , Agua de Mar/microbiología , Indias Occidentales
5.
Rapid Commun Mass Spectrom ; 33(5): 491-502, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30561860

RESUMEN

RATIONALE: Sulfur isotope ratio measurements of bulk sulfide from marine sediments have often been used to reconstruct environmental conditions associated with their formation. In situ microscale spot analyses by secondary ion mass spectrometry (SIMS) and laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) have been utilized for the same purpose. However, these techniques are often not suitable for studying small (≤10 µm) grains or for detecting intra-grain variability. METHODS: Here, we present a method for the physical extraction (using lithium polytungstate heavy liquid) and subsequent sulfur isotope analysis (using SIMS; CAMECA IMS 7f-GEO) of microcrystalline iron sulfides. SIMS sulfur isotope ratio measurements were made via Cs+ bombardment of raster squares with sides of 20-130 µm, using an electron multiplier (EM) detector to collect counts of 32 S- and 34 S- for each pixel (128 × 128 pixel grids) for between 20 and 960 cycles. RESULTS: The extraction procedure did not discernibly alter pyrite grain-size distributions. The apparent inter-grain variability in 34 S/32 S in 1-4 µm-sized pyrite and marcasite fragments from isotopically homogeneous hydrothermal crystals was ~ ±2‰ (1σ), comparable with the standard error of the mean for individual measurements (≤ ±2‰, 1σ). In contrast, grain-specific 34 S/32 S ratios in modern and ancient sedimentary pyrites and marcasites can have inter- and intra-grain variability >60‰. The distributions of intra-sample isotopic variability are consistent with bulk 34 S/32 S values. CONCLUSIONS: SIMS analyses of isolated iron sulfide grains yielded distributions that are isotopically representative of bulk 34 S/32 S values. Populations of iron sulfide grains from sedimentary samples record the evolution of the S-isotopic composition of pore water sulfide in their S-isotopic compositions. These data allow past local environmental conditions to be inferred.

6.
Nat Commun ; 9(1): 3409, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30143628

RESUMEN

Ocean Anoxic Event 2 (OAE2) was a period of dramatic disruption to the global carbon cycle when massive amounts of organic matter (OM) were buried in marine sediments via complex and controversial mechanisms. Here we investigate the role of OM sulfurization, which makes OM less available for microbial respiration, in driving variable OM preservation in OAE2 sedimentary strata from Pont d'Issole (France). We find correlations between the concentration, S:C ratio, S-isotope composition, and sulfur speciation of OM suggesting that sulfurization facilitated changes in carbon burial at this site as the chemocline moved in and out of the sediments during deposition. These patterns are reproduced by a simple model, suggesting that small changes in primary productivity could drive large changes in local OM burial in environments poised near a critical redox threshold. This amplifying mechanism may be central to understanding the magnitude of global carbon cycle response to environmental perturbations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...