Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38737375

RESUMEN

Released mitochondrial DNA (mtDNA) in cells activates cGAS-STING pathway, which induces expression of interferon-stimulated genes (ISGs) and thereby promotes inflammation, as frequently seen in asthmatic airways. However, whether the genetic determinant, Gasdermin B (GSDMB), the most replicated asthma risk gene, regulates this pathway remains unknown. We set out to determine whether and how GSDMB regulates mtDNA-activated cGAS-STING pathway and subsequent ISGs induction in human airway epithelial cells. Using qPCR, ELISA, native polyacrylamide gel electrophoresis, co-immunoprecipitation and immunofluorescence assays, we evaluated the regulation of GSDMB on cGAS-STING pathway in both BEAS-2B cells and primary normal human bronchial epithelial cells (nHBEs). mtDNA was extracted in plasma samples from human asthmatics and the correlation between mtDNA levels and eosinophil counts was analyzed. GSDMB is significantly associated with RANTES expression in asthmatic nasal epithelial brushing samples from the Genes-environments and Admixture in Latino Americans (GALA) II study. Over-expression of GSDMB promotes DNA-induced IFN and ISGs expression in bronchial epithelial BEAS-2B cells and nHBEs. Conversely, knockout of GSDMB led to weakened induction of interferon (IFNs) and ISGs in BEAS-2B cells. Mechanistically, GSDMB interacts with the C-terminus of STING, promoting the translocation of STING to Golgi, leading to the phosphorylation of IRF3 and induction of IFNs and ISGs. mtDNA copy number in serum from asthmatics was significantly correlated with blood eosinophil counts especially in male subjects. GSDMB promotes the activation of mtDNA and poly (dA:dT)-induced activation of cGAS-STING pathway in airway epithelial cells, leading to enhanced induction of ISGs.

2.
J Allergy Clin Immunol ; 152(6): 1493-1519, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37678572

RESUMEN

BACKGROUND: Atopic dermatitis (AD) is a common skin condition with multiple topical treatment options, but uncertain comparative effects. OBJECTIVE: We sought to systematically synthesize the benefits and harms of AD prescription topical treatments. METHODS: For the 2023 American Academy of Allergy, Asthma & Immunology and American College of Allergy, Asthma, and Immunology Joint Task Force on Practice Parameters AD guidelines, we searched MEDLINE, EMBASE, CENTRAL, CINAHL, LILACS, ICTRP, and GREAT databases to September 5, 2022, for randomized trials addressing AD topical treatments. Paired reviewers independently screened records, extracted data, and assessed risk of bias. Random-effects network meta-analyses addressed AD severity, itch, sleep, AD-related quality of life, flares, and harms. The Grading of Recommendations Assessment, Development and Evaluation approach informed certainty of evidence ratings. We classified topical corticosteroids (TCS) using 7 groups-group 1 being most potent. This review is registered in the Open Science Framework (https://osf.io/q5m6s). RESULTS: The 219 included trials (43,123 patients) evaluated 68 interventions. With high-certainty evidence, pimecrolimus improved 6 of 7 outcomes-among the best for 2; high-dose tacrolimus (0.1%) improved 5-among the best for 2; low-dose tacrolimus (0.03%) improved 5-among the best for 1. With moderate- to high-certainty evidence, group 5 TCS improved 6-among the best for 3; group 4 TCS and delgocitinib improved 4-among the best for 2; ruxolitinib improved 4-among the best for 1; group 1 TCS improved 3-among the best for 2. These interventions did not increase harm. Crisaborole and difamilast were intermediately effective, but with uncertain harm. Topical antibiotics alone or in combination may be among the least effective. To maintain AD control, group 5 TCS were among the most effective, followed by tacrolimus and pimecrolimus. CONCLUSIONS: For individuals with AD, pimecrolimus, tacrolimus, and moderate-potency TCS are among the most effective in improving and maintaining multiple AD outcomes. Topical antibiotics may be among the least effective.


Asunto(s)
Asma , Dermatitis Atópica , Fármacos Dermatológicos , Eccema , Humanos , Dermatitis Atópica/tratamiento farmacológico , Tacrolimus/uso terapéutico , Metaanálisis en Red , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Fármacos Dermatológicos/uso terapéutico , Asma/tratamiento farmacológico , Antibacterianos/uso terapéutico
3.
Mol Med ; 29(1): 13, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703108

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS), a life-threatening condition during critical illness, is a common complication of COVID-19. It can originate from various disease etiologies, including severe infections, major injury, or inhalation of irritants. ARDS poses substantial clinical challenges due to a lack of etiology-specific therapies, multisystem involvement, and heterogeneous, poor patient outcomes. A molecular comparison of ARDS groups holds the potential to reveal common and distinct mechanisms underlying ARDS pathogenesis. METHODS: We performed a comparative analysis of urine-based metabolomics and proteomics profiles from COVID-19 ARDS patients (n = 42) and bacterial sepsis-induced ARDS patients (n = 17). To this end, we used two different approaches, first we compared the molecular omics profiles between ARDS groups, and second, we correlated clinical manifestations within each group with the omics profiles. RESULTS: The comparison of the two ARDS etiologies identified 150 metabolites and 70 proteins that were differentially abundant between the two groups. Based on these findings, we interrogated the interplay of cell adhesion/extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis through a multi-omic network approach. Moreover, we identified a proteomic signature associated with mortality in COVID-19 ARDS patients, which contained several proteins that had previously been implicated in clinical manifestations frequently linked with ARDS pathogenesis. CONCLUSION: In summary, our results provide evidence for significant molecular differences in ARDS patients from different etiologies and a potential synergy of extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis. The proteomic mortality signature should be further investigated in future studies to develop prediction models for COVID-19 patient outcomes.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Sepsis , Humanos , COVID-19/complicaciones , Proteómica , Multiómica , Síndrome de Dificultad Respiratoria/etiología , Sepsis/complicaciones , Inflamación
4.
J Allergy Clin Immunol ; 151(1): 147-158, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36191689

RESUMEN

BACKGROUND: Atopic dermatitis (AD, eczema) is driven by a combination of skin barrier defects, immune dysregulation, and extrinsic stimuli such as allergens, irritants, and microbes. The role of environmental allergens (aeroallergens) in triggering AD remains unclear. OBJECTIVE: We systematically synthesized evidence regarding the benefits and harms of allergen immunotherapy (AIT) for AD. METHODS: As part of the 2022 American Academy of Allergy, Asthma & Immunology/American College of Allergy, Asthma and Immunology Joint Task Force on Practice Parameters AD Guideline update, we searched the MEDLINE, EMBASE, CENTRAL, CINAHL, LILACS, Global Resource for Eczema Trials, and Web of Science databases from inception to December 2021 for randomized controlled trials comparing subcutaneous immunotherapy (SCIT), sublingual immunotherapy (SLIT), and/or no AIT (placebo or standard care) for guideline panel-defined patient-important outcomes: AD severity, itch, AD-related quality of life (QoL), flares, and adverse events. Raters independently screened, extracted data, and assessed risk of bias in duplicate. We synthesized intervention effects using frequentist and Bayesian random-effects models. The GRADE approach determined the quality of evidence. RESULTS: Twenty-three randomized controlled trials including 1957 adult and pediatric patients sensitized primarily to house dust mite showed that add-on SCIT and SLIT have similar relative and absolute effects and likely result in important improvements in AD severity, defined as a 50% reduction in SCORing Atopic Dermatitis (risk ratio [95% confidence interval] 1.53 [1.31-1.78]; 26% vs 40%, absolute difference 14%) and QoL, defined as an improvement in Dermatology Life Quality Index by 4 points or more (risk ratio [95% confidence interval] 1.44 [1.03-2.01]; 39% vs 56%, absolute difference 17%; both outcomes moderate certainty). Both routes of AIT increased adverse events (risk ratio [95% confidence interval] 1.61 [1.44-1.79]; 66% with SCIT vs 41% with placebo; 13% with SLIT vs 8% with placebo; high certainty). AIT's effect on sleep disturbance and eczema flares was very uncertain. Subgroup and sensitivity analyses were consistent with the main findings. CONCLUSIONS: SCIT and SLIT to aeroallergens, particularly house dust mite, can similarly and importantly improve AD severity and QoL. SCIT increases adverse effects more than SLIT. These findings support a multidisciplinary and shared decision-making approach to optimally managing AD.


Asunto(s)
Asma , Dermatitis Atópica , Eccema , Hipersensibilidad , Inmunoterapia Sublingual , Adulto , Animales , Humanos , Niño , Dermatitis Atópica/tratamiento farmacológico , Calidad de Vida , Teorema de Bayes , Desensibilización Inmunológica/efectos adversos , Pyroglyphidae , Hipersensibilidad/etiología , Asma/tratamiento farmacológico , Alérgenos/uso terapéutico , Inmunoterapia Sublingual/efectos adversos , Dermatophagoides pteronyssinus
5.
PLoS Pathog ; 18(9): e1010819, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36121875

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS), a life-threatening condition characterized by hypoxemia and poor lung compliance, is associated with high mortality. ARDS induced by COVID-19 has similar clinical presentations and pathological manifestations as non-COVID-19 ARDS. However, COVID-19 ARDS is associated with a more protracted inflammatory respiratory failure compared to traditional ARDS. Therefore, a comprehensive molecular comparison of ARDS of different etiologies groups may pave the way for more specific clinical interventions. METHODS AND FINDINGS: In this study, we compared COVID-19 ARDS (n = 43) and bacterial sepsis-induced (non-COVID-19) ARDS (n = 24) using multi-omic plasma profiles covering 663 metabolites, 1,051 lipids, and 266 proteins. To address both between- and within- ARDS group variabilities we followed two approaches. First, we identified 706 molecules differently abundant between the two ARDS etiologies, revealing more than 40 biological processes differently regulated between the two groups. From these processes, we assembled a cascade of therapeutically relevant pathways downstream of sphingosine metabolism. The analysis suggests a possible overactivation of arginine metabolism involved in long-term sequelae of ARDS and highlights the potential of JAK inhibitors to improve outcomes in bacterial sepsis-induced ARDS. The second part of our study involved the comparison of the two ARDS groups with respect to clinical manifestations. Using a data-driven multi-omic network, we identified signatures of acute kidney injury (AKI) and thrombocytosis within each ARDS group. The AKI-associated network implicated mitochondrial dysregulation which might lead to post-ARDS renal-sequalae. The thrombocytosis-associated network hinted at a synergy between prothrombotic processes, namely IL-17, MAPK, TNF signaling pathways, and cell adhesion molecules. Thus, we speculate that combination therapy targeting two or more of these processes may ameliorate thrombocytosis-mediated hypercoagulation. CONCLUSION: We present a first comprehensive molecular characterization of differences between two ARDS etiologies-COVID-19 and bacterial sepsis. Further investigation into the identified pathways will lead to a better understanding of the pathophysiological processes, potentially enabling novel therapeutic interventions.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Inhibidores de las Cinasas Janus , Síndrome de Dificultad Respiratoria , Sepsis , Trombocitosis , Arginina , COVID-19/complicaciones , Humanos , Interleucina-17 , Lípidos , Síndrome de Dificultad Respiratoria/etiología , Sepsis/complicaciones , Esfingosina
6.
medRxiv ; 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35982655

RESUMEN

Background: Acute respiratory distress syndrome (ARDS), a life-threatening condition characterized by hypoxemia and poor lung compliance, is associated with high mortality. ARDS induced by COVID-19 has similar clinical presentations and pathological manifestations as non-COVID-19 ARDS. However, COVID-19 ARDS is associated with a more protracted inflammatory respiratory failure compared to traditional ARDS. Therefore, a comprehensive molecular comparison of ARDS of different etiologies groups may pave the way for more specific clinical interventions. Methods and Findings: In this study, we compared COVID-19 ARDS (n=43) and bacterial sepsis-induced (non-COVID-19) ARDS (n=24) using multi-omic plasma profiles covering 663 metabolites, 1,051 lipids, and 266 proteins. To address both between- and within-ARDS group variabilities we followed two approaches. First, we identified 706 molecules differently abundant between the two ARDS etiologies, revealing more than 40 biological processes differently regulated between the two groups. From these processes, we assembled a cascade of therapeutically relevant pathways downstream of sphingosine metabolism. The analysis suggests a possible overactivation of arginine metabolism involved in long-term sequelae of ARDS and highlights the potential of JAK inhibitors to improve outcomes in bacterial sepsis-induced ARDS. The second part of our study involved the comparison of the two ARDS groups with respect to clinical manifestations. Using a data-driven multi-omic network, we identified signatures of acute kidney injury (AKI) and thrombocytosis within each ARDS group. The AKI-associated network implicated mitochondrial dysregulation which might lead to post-ARDS renal-sequalae. The thrombocytosis-associated network hinted at a synergy between prothrombotic processes, namely IL-17, MAPK, TNF signaling pathways, and cell adhesion molecules. Thus, we speculate that combination therapy targeting two or more of these processes may ameliorate thrombocytosis-mediated hypercoagulation. Conclusion: We present a first comprehensive molecular characterization of differences between two ARDS etiologies - COVID-19 and bacterial sepsis. Further investigation into the identified pathways will lead to a better understanding of the pathophysiological processes, potentially enabling novel therapeutic interventions.

7.
medRxiv ; 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35982662

RESUMEN

Acute respiratory distress syndrome (ARDS), a life-threatening condition during critical illness, is a common complication of COVID-19. It can originate from various disease etiologies, including severe infections, major injury, or inhalation of irritants. ARDS poses substantial clinical challenges due to a lack of etiology-specific therapies, multisystem involvement, and heterogeneous, poor patient outcomes. A molecular comparison of ARDS groups holds the potential to reveal common and distinct mechanisms underlying ARDS pathogenesis. In this study, we performed a comparative analysis of urine-based metabolomics and proteomics profiles from COVID-19 ARDS patients (n = 42) and bacterial sepsis-induced ARDS patients (n = 17). The comparison of these ARDS etiologies identified 150 metabolites and 70 proteins that were differentially abundant between the two groups. Based on these findings, we interrogated the interplay of cell adhesion/extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis through a multi-omic network approach. Moreover, we identified a proteomic signature associated with mortality in COVID-19 ARDS patients, which contained several proteins that had previously been implicated in clinical manifestations frequently linked with ARDS pathogenesis. In summary, our results provide evidence for significant molecular differences in ARDS patients from different etiologies and a potential synergy of extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis. The proteomic mortality signature should be further investigated in future studies to develop prediction models for COVID-19 patient outcomes.

8.
Nat Commun ; 13(1): 4197, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864089

RESUMEN

Metagenomic DNA sequencing is a powerful tool to characterize microbial communities but is sensitive to environmental DNA contamination, in particular when applied to samples with low microbial biomass. Here, we present Sample-Intrinsic microbial DNA Found by Tagging and sequencing (SIFT-seq) a metagenomic sequencing assay that is robust against environmental DNA contamination introduced during sample preparation. The core idea of SIFT-seq is to tag the DNA in the sample prior to DNA isolation and library preparation with a label that can be recorded by DNA sequencing. Any contaminating DNA that is introduced in the sample after tagging can then be bioinformatically identified and removed. We applied SIFT-seq to screen for infections from microorganisms with low burden in blood and urine, to identify COVID-19 co-infection, to characterize the urinary microbiome, and to identify microbial DNA signatures of sepsis and inflammatory bowel disease in blood.


Asunto(s)
COVID-19 , ADN Ambiental , ADN , Contaminación de ADN , ADN Bacteriano/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metagenómica , Análisis de Secuencia de ADN
9.
iScience ; 25(7): 104612, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35756895

RESUMEN

The coronavirus disease-19 (COVID-19) pandemic has ravaged global healthcare with previously unseen levels of morbidity and mortality. In this study, we performed large-scale integrative multi-omics analyses of serum obtained from COVID-19 patients with the goal of uncovering novel pathogenic complexities of this disease and identifying molecular signatures that predict clinical outcomes. We assembled a network of protein-metabolite interactions through targeted metabolomic and proteomic profiling in 330 COVID-19 patients compared to 97 non-COVID, hospitalized controls. Our network identified distinct protein-metabolite cross talk related to immune modulation, energy and nucleotide metabolism, vascular homeostasis, and collagen catabolism. Additionally, our data linked multiple proteins and metabolites to clinical indices associated with long-term mortality and morbidity. Finally, we developed a novel composite outcome measure for COVID-19 disease severity based on metabolomics data. The model predicts severe disease with a concordance index of around 0.69, and shows high predictive power of 0.83-0.93 in two independent datasets.

10.
Am J Pathol ; 192(7): 1001-1015, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35469796

RESUMEN

Vascular injury is a well-established, disease-modifying factor in acute respiratory distress syndrome (ARDS) pathogenesis. Recently, coronavirus disease 2019 (COVID-19)-induced injury to the vascular compartment has been linked to complement activation, microvascular thrombosis, and dysregulated immune responses. This study sought to assess whether aberrant vascular activation in this prothrombotic context was associated with the induction of necroptotic vascular cell death. To achieve this, proteomic analysis was performed on blood samples from COVID-19 subjects at distinct time points during ARDS pathogenesis (hospitalized at risk, N = 59; ARDS, N = 31; and recovery, N = 12). Assessment of circulating vascular markers in the at-risk cohort revealed a signature of low vascular protein abundance that tracked with low platelet levels and increased mortality. This signature was replicated in the ARDS cohort and correlated with increased plasma angiopoietin 2 levels. COVID-19 ARDS lung autopsy immunostaining confirmed a link between vascular injury (angiopoietin 2) and platelet-rich microthrombi (CD61) and induction of necrotic cell death [phosphorylated mixed lineage kinase domain-like (pMLKL)]. Among recovery subjects, the vascular signature identified patients with poor functional outcomes. Taken together, this vascular injury signature was associated with low platelet levels and increased mortality and can be used to identify ARDS patients most likely to benefit from vascular targeted therapies.


Asunto(s)
Angiopoyetina 2 , COVID-19 , Necroptosis , Síndrome de Dificultad Respiratoria , Angiopoyetina 2/metabolismo , COVID-19/complicaciones , Humanos , Proteómica , Síndrome de Dificultad Respiratoria/virología
12.
Cell Metab ; 33(11): 2174-2188.e5, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34599884

RESUMEN

Individuals infected with SARS-CoV-2 who also display hyperglycemia suffer from longer hospital stays, higher risk of developing acute respiratory distress syndrome (ARDS), and increased mortality. Nevertheless, the pathophysiological mechanism of hyperglycemia in COVID-19 remains poorly characterized. Here, we show that hyperglycemia is similarly prevalent among patients with ARDS independent of COVID-19 status. Yet among patients with ARDS and COVID-19, insulin resistance is the prevalent cause of hyperglycemia, independent of glucocorticoid treatment, which is unlike patients with ARDS but without COVID-19, where pancreatic beta cell failure predominates. A screen of glucoregulatory hormones revealed lower levels of adiponectin in patients with COVID-19. Hamsters infected with SARS-CoV-2 demonstrated a strong antiviral gene expression program in the adipose tissue and diminished expression of adiponectin. Moreover, we show that SARS-CoV-2 can infect adipocytes. Together these data suggest that SARS-CoV-2 may trigger adipose tissue dysfunction to drive insulin resistance and adverse outcomes in acute COVID-19.

13.
Sci Rep ; 11(1): 15872, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354174

RESUMEN

COVID-19-associated respiratory failure offers the unprecedented opportunity to evaluate the differential host response to a uniform pathogenic insult. Understanding whether there are distinct subphenotypes of severe COVID-19 may offer insight into its pathophysiology. Sequential Organ Failure Assessment (SOFA) score is an objective and comprehensive measurement that measures dysfunction severity of six organ systems, i.e., cardiovascular, central nervous system, coagulation, liver, renal, and respiration. Our aim was to identify and characterize distinct subphenotypes of COVID-19 critical illness defined by the post-intubation trajectory of SOFA score. Intubated COVID-19 patients at two hospitals in New York city were leveraged as development and validation cohorts. Patients were grouped into mild, intermediate, and severe strata by their baseline post-intubation SOFA. Hierarchical agglomerative clustering was performed within each stratum to detect subphenotypes based on similarities amongst SOFA score trajectories evaluated by Dynamic Time Warping. Distinct worsening and recovering subphenotypes were identified within each stratum, which had distinct 7-day post-intubation SOFA progression trends. Patients in the worsening suphenotypes had a higher mortality than those in the recovering subphenotypes within each stratum (mild stratum, 29.7% vs. 10.3%, p = 0.033; intermediate stratum, 29.3% vs. 8.0%, p = 0.002; severe stratum, 53.7% vs. 22.2%, p < 0.001). Pathophysiologic biomarkers associated with progression were distinct at each stratum, including findings suggestive of inflammation in low baseline severity of illness versus hemophagocytic lymphohistiocytosis in higher baseline severity of illness. The findings suggest that there are clear worsening and recovering subphenotypes of COVID-19 respiratory failure after intubation, which are more predictive of outcomes than baseline severity of illness. Distinct progression biomarkers at differential baseline severity of illness suggests a heterogeneous pathobiology in the progression of COVID-19 respiratory failure.


Asunto(s)
COVID-19/diagnóstico , Insuficiencia Multiorgánica/diagnóstico , Anciano , COVID-19/complicaciones , COVID-19/fisiopatología , Enfermedad Crítica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/fisiopatología , Puntuaciones en la Disfunción de Órganos , Pronóstico , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad
14.
Sci Rep ; 11(1): 12606, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131192

RESUMEN

Increasing evidence has shown that Coronavirus disease 19 (COVID-19) severity is driven by a dysregulated immunologic response. We aimed to assess the differences in inflammatory cytokines in COVID-19 patients compared to contemporaneously hospitalized controls and then analyze the relationship between these cytokines and the development of Acute Respiratory Distress Syndrome (ARDS), Acute Kidney Injury (AKI) and mortality. In this cohort study of hospitalized patients, done between March third, 2020 and April first, 2020 at a quaternary referral center in New York City we included adult hospitalized patients with COVID-19 and negative controls. Serum specimens were obtained on the first, second, and third hospital day and cytokines were measured by Luminex. Autopsies of nine cohort patients were examined. We identified 90 COVID-19 patients and 51 controls. Analysis of 48 inflammatory cytokines revealed upregulation of macrophage induced chemokines, T-cell related interleukines and stromal cell producing cytokines in COVID-19 patients compared to the controls. Moreover, distinctive cytokine signatures predicted the development of ARDS, AKI and mortality in COVID-19 patients. Specifically, macrophage-associated cytokines predicted ARDS, T cell immunity related cytokines predicted AKI and mortality was associated with cytokines of activated immune pathways, of which IL-13 was universally correlated with ARDS, AKI and mortality. Histopathological examination of the autopsies showed diffuse alveolar damage with significant mononuclear inflammatory cell infiltration. Additionally, the kidneys demonstrated glomerular sclerosis, tubulointerstitial lymphocyte infiltration and cortical and medullary atrophy. These patterns of cytokine expression offer insight into the pathogenesis of COVID-19 disease, its severity, and subsequent lung and kidney injury suggesting more targeted treatment strategies.


Asunto(s)
COVID-19/mortalidad , COVID-19/fisiopatología , Citocinas/sangre , Lesión Renal Aguda/sangre , Lesión Renal Aguda/patología , Lesión Renal Aguda/virología , Anciano , COVID-19/sangre , COVID-19/terapia , Estudios de Casos y Controles , Síndrome de Liberación de Citoquinas/virología , Femenino , Hospitales , Humanos , Pulmón/patología , Pulmón/virología , Masculino , Persona de Mediana Edad , Ciudad de Nueva York , Respiración Artificial , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/virología , Resultado del Tratamiento
15.
medRxiv ; 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33791724

RESUMEN

COVID-19 has proven to be a metabolic disease resulting in adverse outcomes in individuals with diabetes or obesity. Patients infected with SARS-CoV-2 and hyperglycemia suffer from longer hospital stays, higher risk of developing acute respiratory distress syndrome (ARDS), and increased mortality compared to those who do not develop hyperglycemia. Nevertheless, the pathophysiological mechanism(s) of hyperglycemia in COVID-19 remains poorly characterized. Here we show that insulin resistance rather than pancreatic beta cell failure is the prevalent cause of hyperglycemia in COVID-19 patients with ARDS, independent of glucocorticoid treatment. A screen of protein hormones that regulate glucose homeostasis reveals that the insulin sensitizing adipokine adiponectin is reduced in hyperglycemic COVID-19 patients. Hamsters infected with SARS-CoV-2 also have diminished expression of adiponectin. Together these data suggest that adipose tissue dysfunction may be a driver of insulin resistance and adverse outcomes in acute COVID-19.

16.
Thorax ; 76(12): 1176-1185, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33863829

RESUMEN

BACKGROUND: Although acute respiratory distress syndrome (ARDS) is associated with high mortality, its direct causal link with death is unclear. Clarifying this link is important to justify costly research on prevention of ARDS. OBJECTIVE: To estimate the attributable mortality, if any, of ARDS. DESIGN: First, we performed a systematic review and meta-analysis of observational studies reporting mortality of critically ill patients with and without ARDS matched for underlying risk factor. Next, we conducted a survival analysis of prospectively collected patient-level data from subjects enrolled in three intensive care unit (ICU) cohorts to estimate the attributable mortality of critically ill septic patients with and without ARDS using a novel causal inference method. RESULTS: In the meta-analysis, 44 studies (47 cohorts) involving 56 081 critically ill patients were included. Mortality was higher in patients with versus without ARDS (risk ratio 2.48, 95% CI 1.86 to 3.30; p<0.001) with a numerically stronger association between ARDS and mortality in trauma than sepsis. In the survival analysis of three ICU cohorts enrolling 1203 critically ill patients, 658 septic patients were included. After controlling for confounders, ARDS was found to increase the mortality rate by 15% (95% CI 3% to 26%; p=0.015). Significant increases in mortality were seen for severe (23%, 95% CI 3% to 44%; p=0.028) and moderate (16%, 95% CI 2% to 31%; p=0.031), but not for mild ARDS. CONCLUSIONS: ARDS has a direct causal link with mortality. Our findings provide information about the extent to which continued funding of ARDS prevention trials has potential to impart survival benefit. PROSPERO REGISTRATION NUMBER: CRD42017078313.


Asunto(s)
Síndrome de Dificultad Respiratoria , Enfermedad Crítica , Mortalidad Hospitalaria , Humanos , Unidades de Cuidados Intensivos , Análisis de Supervivencia
17.
Syst Rev ; 9(1): 222, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32988419

RESUMEN

BACKGROUND: Atopic dermatitis (AD) is an inflammatory chronic condition that affects the skin of children and adults and has an important impact on the quality of life. Treatments for AD are based on environmental controls, topical and systemic therapies, and allergen-specific immunotherapy (AIT). However, it remains unclear the effectiveness and adverse events of AIT and all conventional topical treatments compared with placebo and each other for AD. METHODS: We will search five electronic databases [Central Cochrane register of controlled trials (CENTRAL), MEDLINE, EMBASE, CINAHL, and LILACS] from inception until November 2019 with no language restriction, and we will include experimental studies [randomized controlled trials (RCTs), and quasi-RCTs]. The primary outcome is global and specific skin symptoms assessment. Secondary outcomes are hospital length of stay, quality of life, and adverse events. Reviewers independently will extract data from the studies that meet our inclusion criteria and will assess the risk of bias of individual primary studies. We will conduct random effects pairwise meta-analyses for the observed pairwise comparisons with at least two trials. Then, we will perform random-effects Bayesian network meta-analysis (NMA) to obtain treatment effects for all possible comparisons and to provide a hierarchy of all interventions for each outcome. Possible incoherence between direct and indirect sources of evidence will be investigated locally (if possible) and globally. To investigate sources of statistical heterogeneity, we will perform a series of meta-regression analyses based on pre-specified important effect modifiers. Two authors will appraise the certainty of the evidence for each outcome applying the GRADE's framework for NMA. DISCUSSION: The findings of this systematic review will shed the light on the effectiveness and adverse events of all possible comparisons for treating AD and on the quality of the collated evidence for recommendations. It will also provide critical information to health care professionals to comprehend and manage this disease at different age stages, treatment type, duration, and severity of atopic dermatitis. SYSTEMATIC REVIEW REGISTRATION: PROSPERO Protocol ID CRD42019147106.


Asunto(s)
Dermatitis Atópica , Eccema , Adulto , Niño , Dermatitis Atópica/tratamiento farmacológico , Desensibilización Inmunológica , Humanos , Metaanálisis como Asunto , Metaanálisis en Red , Calidad de Vida , Revisiones Sistemáticas como Asunto
18.
Rev. colomb. reumatol ; 24(1): 54-59, ene.-mar. 2017. tab, graf
Artículo en Español | LILACS | ID: biblio-900853

RESUMEN

RESUMEN Los bifosfonatos se utilizan para el manejo de enfermedades con incremento de la resorción ósea como la osteoporosis, la enfermedad metastásica ósea y la hipercalcemia maligna, entre otras patologías. En los últimos años se ha reportado que el uso de bifosfonatos intravenosos como el zoledronato y el pamidronato pueden generar efectos adversos oculares, ocasionados por una reacción de fase aguda mediada por la interleucina-6 (IL-6) y factor de necrosis tumoral alfa (TNF-a). Se reportan 2 casos (una mujer de 71 años y un hombre de 67 años) que entre las 24 a 72 h después de recibir terapia con zoledronato presentaron una uveítis anterior.


ABSTRACT Bisphosphonates are used in the management of diseases characterized by an increase in bone resorption such as osteoporosis, metatasic bone disease, malignant hypercalcemia among others. It has been reported that the use of IV bisphosphonates as zoledronate and pamidronate generate ocular adverse effects by an acute phase reaction mediated by an increase of interleukin 6 (IL-6) and tumoral necrosis factor (TNF-a). We present 2 cases, a woman 71 years old and a 67 years old man that received therapy with bisphosphonates and 24 to 72hours later they presented an anterior uveitis.


Asunto(s)
Humanos , Masculino , Femenino , Anciano , Difosfonatos , Ácido Zoledrónico , Pamidronato , Uveítis Anterior , Anomalías del Ojo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...