Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 17(11): e3000516, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31751328

RESUMEN

Behavior provides important insights into neuronal processes. For example, analysis of reaching movements can give a reliable indication of the degree of impairment in neurological disorders such as stroke, Parkinson disease, or Huntington disease. The analysis of such movement abnormalities is notoriously difficult and requires a trained evaluator. Here, we show that a deep neural network is able to score behavioral impairments with expert accuracy in rodent models of stroke. The same network was also trained to successfully score movements in a variety of other behavioral tasks. The neural network also uncovered novel movement alterations related to stroke, which had higher predictive power of stroke volume than the movement components defined by human experts. Moreover, when the regression network was trained only on categorical information (control = 0; stroke = 1), it generated predictions with intermediate values between 0 and 1 that matched the human expert scores of stroke severity. The network thus offers a new data-driven approach to automatically derive ratings of motor impairments. Altogether, this network can provide a reliable neurological assessment and can assist the design of behavioral indices to diagnose and monitor neurological disorders.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Enfermedades del Sistema Nervioso/fisiopatología , Redes Neurales de la Computación , Animales , Modelos Animales de Enfermedad , Miembro Anterior , Masculino , Actividad Motora , Trastornos Motores/fisiopatología , Destreza Motora , Movimiento , Ratas , Accidente Cerebrovascular/fisiopatología
2.
Brain Stimul ; 9(6): 911-918, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27576185

RESUMEN

BACKGROUND: Hippocampal sharp-wave ripples (SWRs) arising from synchronous bursting in CA3 pyramidal cells and propagating to CA1 are thought to facilitate memory consolidation. Stimulation of the CA3 axon collaterals comprising the hippocampal commissure in rats interrupts sharp-wave ripples and leads to memory impairment. In primates, however, these commissural collaterals are limited. Other hippocampal fiber pathways, like the fornix, may be potential targets for modulating ongoing hippocampal activity, with the short latencies necessary to interrupt ripples. OBJECTIVE: The aim of this study is to determine the efficacy of closed-loop stimulation adjacent to the fornix for interrupting hippocampal ripples. METHOD: Stimulating electrodes were implanted bilaterally alongside the fornix in the macaque, together with microelectrodes targeting the hippocampus for recording SWRs. We first verified that fornix stimulation reliably and selectively evoked a response in the hippocampus. We then implemented online detection and stimulation as hippocampal ripples occurred. RESULTS: The closed-loop interruption method was effective in interrupting ripples as well as the associated hippocampal multi-unit activity, demonstrating the feasibility of ripple interruption using fornix stimulation in primates. CONCLUSION: Analogous to murine research, such an approach will likely be useful in understanding the role of SWRs in memory formation in macaques and other primates sharing these pathways, such as humans. More generally, closed-loop stimulation of the fornix may prove effective in interrogating hippocampal-dependent memory processes. Finally, this rapid, contingent-DBS approach may be a means for modifying pathological high-frequency events within the hippocampus, and potentially throughout the extended hippocampal circuit.


Asunto(s)
Ondas Encefálicas/fisiología , Región CA3 Hipocampal/fisiología , Estimulación Encefálica Profunda/métodos , Fórnix/fisiología , Células Piramidales/fisiología , Animales , Femenino , Macaca mulatta
3.
Behav Brain Res ; 253: 78-89, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23871611

RESUMEN

It is thought that a close dialogue between the primary motor (M1) and somatosensory (S1) cortices is necessary for skilled motor learning. The extent of the relative S1 contribution in producing skilled reaching movements, however, is still unclear. Here we used anodal transcranial direct current stimulation (tDCS), which is able to alter polarity-specific excitability in the S1, to facilitate skilled movement in intact behaving rats. We hypothesized that the critical role of S1 in reaching performance can be enhanced by bilateral tDCS. Pretrained rats were assigned to control or stimulation conditions: (1) UnAno: the unilateral application of an anodal current to the side contralateral to the paw preferred for reaching; (2) BiAno1: bilateral anodal current; (3) BiAno2: a bilateral anodal current with additional 30ms of 65µA pulses every 5s. Rats received tDCS (65µA; 10min/rat) to the S1 during skilled reach training for 20 days (online-effect phase). After-effect assessment occurred for the next ten days in the absence of electrical stimulation. Quantitative and qualitative analyses of online-effects of tDCS showed that UnAno and BiAno1 somatosensory stimulation significantly improve skilled reaching performance. Bilateral BiAno1 stimulation was associated with greater qualitative functional improvement than unilateral UnAno stimulation. tDCS-induced improvements were not observed in the after-effects phase. Quantitative cytoarchitectonic analysis revealed that somatosensory tDCS bilaterally increases cortical neural density. The findings emphasize the central role of bilateral somatosensory feedback in skill acquisition through modulation of cortico-motor excitability.


Asunto(s)
Conducta Animal/fisiología , Destreza Motora/fisiología , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Animales , Fenómenos Biomecánicos , Recuento de Células , Estimulación Eléctrica , Electrodos , Lateralidad Funcional/fisiología , Masculino , Corteza Motora/anatomía & histología , Corteza Motora/citología , Corteza Motora/fisiología , Desempeño Psicomotor/fisiología , Ratas , Ratas Long-Evans , Corteza Somatosensorial/anatomía & histología , Corteza Somatosensorial/citología , Técnicas Estereotáxicas
4.
Stroke Res Treat ; 2013: 170256, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23533955

RESUMEN

Transcranial direct current stimulation (tDCS) is a promising technique to treat a wide range of neurological conditions including stroke. The pathological processes following stroke may provide an exemplary system to investigate how tDCS promotes neuronal plasticity and functional recovery. Changes in synaptic function after stroke, such as reduced excitability, formation of aberrant connections, and deregulated plastic modifications, have been postulated to impede recovery from stroke. However, if tDCS could counteract these negative changes by influencing the system's neurophysiology, it would contribute to the formation of functionally meaningful connections and the maintenance of existing pathways. This paper is aimed at providing a review of underlying mechanisms of tDCS and its application to stroke. In addition, to maximize the effectiveness of tDCS in stroke rehabilitation, future research needs to determine the optimal stimulation protocols and parameters. We discuss how stimulation parameters could be optimized based on electrophysiological activity. In particular, we propose that cortical synchrony may represent a biomarker of tDCS efficacy to indicate communication between affected areas. Understanding the mechanisms by which tDCS affects the neural substrate after stroke and finding ways to optimize tDCS for each patient are key to effective rehabilitation approaches.

5.
Curr Top Behav Neurosci ; 15: 117-36, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23519767

RESUMEN

It has been suggested that long-term modifications of synaptic transmission constitute the foundation of the processes by which information is stored in the central nervous system. A group of proteins called neurotrophins are considered powerful molecular mediators in central synaptic plasticity. Among these, brain-derived neurotrophic factor (BDNF) as well as neurotrophin-3 (NT-3) have emerged as having key roles in the neurobiological mechanisms related to learning and memory. In this chapter, we review the studies that have represented a significant step forward in understanding the role played by BDNF and NT-3 in long-term synaptic plasticity. The effects of BDNF and NT-3 on synaptic plasticity can be of a permissive nature, establishing the conditions under which plastic changes can take place, or it may be instructive, directly modifying the communication and morphology of synapses. The actions carried out by BDNF include its capacity to contribute to the stabilization and maturation of already-existing synapses, as well as to generate new synaptic contacts. One important finding that highlights the participation of these neurotrophins in synaptic plasticity is the observation that adding BDNF or NT-3 gives rise to drastic long-term increases in synaptic transmission, similar to the long-term potentiation in the hippocampus and neocortex of mammals. Because neurotrophins modulate both the electrical properties and the structural organization of the synapse, these proteins have been considered important biological markers of learning and memory processes.


Asunto(s)
Conducta Animal/fisiología , Factor Neurotrófico Derivado del Encéfalo/fisiología , Encéfalo/fisiología , Plasticidad Neuronal/fisiología , Neurotrofina 3/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neurotrofina 3/metabolismo , Sinapsis/metabolismo
6.
Neurosci Lett ; 445(1): 62-7, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18782600

RESUMEN

Brain-derived neurotrophic factor (BDNF) has been proposed as a key regulator and mediator of long-term synaptic modifications related to learning and memory maintenance. Our previous studies show that application of high-frequency stimulation (HFS) sufficient to elicit LTP at the dentate gyrus (DG)-CA3 pathway produces mossy fiber structural modifications 7 days after tetanic stimulation. In the present study, we show that acute intrahippocampal microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the DG-CA3 projection of anesthetized adult rats. Furthermore, we show that BDNF functional modifications in synaptic efficacy are accompanied by a presynaptic structural long-lasting reorganization at the hippocampal mossy fiber pathway. These findings support the idea that BDNF plays an important role as synaptic messenger of activity-dependent synaptic plasticity in the adult mammalian brain, in vivo.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Fibras Musgosas del Hipocampo/efectos de los fármacos , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Carbazoles/farmacología , Citocromos c/farmacología , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Alcaloides Indólicos/farmacología , Potenciación a Largo Plazo/fisiología , Potenciación a Largo Plazo/efectos de la radiación , Masculino , Ratas , Ratas Wistar , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Transmisión Sináptica/efectos de la radiación
7.
Neurobiol Learn Mem ; 90(3): 584-7, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18625328

RESUMEN

Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators of not only central synaptic plasticity, but also behavioral interactions between an organism and its environment. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that intracortical microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the projection from the basolateral nucleus of the amygdala (Bla) to the IC of adult rats in vivo. Recently, we found that intracortical microinfusion of BDNF previous to CTA training enhances the retention of this task. In this work, we present experimental data showing that acute intracortical delivery of BDNF (2 microg/2 microl per side) reverses the deficit in CTA memory caused by inhibition of insular cortex protein synthesis due to anisomycin administration (100 microg/microl per side) in male adult Wistar rats. These findings suggest that BDNF is a protein synthesis product essential for neocortical long-term memory storage.


Asunto(s)
Reacción de Prevención/fisiología , Factor Neurotrófico Derivado del Encéfalo/fisiología , Condicionamiento Clásico/fisiología , Lóbulo Temporal/fisiología , Animales , Anisomicina/farmacología , Reacción de Prevención/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Condicionamiento Clásico/efectos de los fármacos , Masculino , Microinyecciones , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Gusto , Lóbulo Temporal/efectos de los fármacos
8.
Brain Res ; 991(1-2): 274-9, 2003 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-14575905

RESUMEN

Recent studies suggest that brain-derived neurotrophic factor (BDNF) plays a critical role in long-term synaptic plasticity in the adult brain. Previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of different aversive learning tasks, have demonstrated that tetanic stimulation of the basolateral nucleus of the amygdala (Bla) induces an N-methyl-D-aspartate (NMDA)-dependent form of long-term potentiation (LTP) in the IC of adult rats in vivo. Here, we show that acute intracortical microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the Bla-IC projection of anesthetized adult rats. This constitutes an in vivo demonstration of neurotrophin-induced potentiation of synaptic transmission in the neocortex. These findings support the concept that BDNF could be a synaptic messenger involved in activity-dependent synaptic plasticity.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Plasticidad Neuronal/fisiología , Transmisión Sináptica/efectos de los fármacos , Lóbulo Temporal/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Inyecciones Intraventriculares , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Plasticidad Neuronal/efectos de los fármacos , Ratas , Ratas Wistar , Transmisión Sináptica/fisiología , Lóbulo Temporal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...