Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203867

RESUMEN

In recent years, there has been a growing interest in studying and exploring the potential health benefits of foods, mainly from vegetables and fruits from regular intake. The presence of secondary metabolites, namely polyphenols, carotenoids and terpenes, in certain food matrices seems to contribute to their functional properties, expressed through an increased prevention in the development of certain chronic diseases, namely coronary heart diseases, neurodegenerative diseases, cancer and diabetes. However, some foods' volatile secondary metabolites also present important bioactive properties, although this is a poorly scientifically explored field. In this context, and in order to explore the potential bioactivity of volatile metabolites in different vegetables and fruits from regular consumption, the volatile composition was established using a green extraction technique, solid phase microextraction in headspace mode (HS-SPME), combined with gas chromatography tandem mass spectrometry (GC-MS). A total of 320 volatile metabolites, comprising 51 terpenic compounds, 45 organosulfur compounds, 31 aldehydes, 37 esters, 29 ketones, 28 alcohols, 23 furanic compounds, 22 hydrocarbons, 19 benzene compounds, 13 nitrogenous compounds, 9 carboxylic acids, 7 ethers, 4 halogenated compounds and 3 naphthalene derivatives, were positively identified. Each investigated fruit and vegetable showed a specific volatile metabolomic profile. The obtained results revealed that terpenic compounds, to which are associated antimicrobial, antioxidant, and anticancer activities, are the most predominant chemical family in beetroot (61%), orange carrot (58%) and white carrot (61%), while organosulfur compounds (antiviral activity) are dominant in onion, garlic and watercress. Broccoli and spinach are essentially constituted by alcohols and aldehydes (enzyme-inhibition and antimicrobial properties), while fruits from the Solanaceae family are characterized by esters in tamarillo and aldehydes in tomato.


Asunto(s)
Frutas/química , Verduras/química , Compuestos Orgánicos Volátiles/química , Alcoholes/análisis , Aldehídos/análisis , Ésteres/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Cetonas/análisis , Metabolómica/métodos , Microextracción en Fase Sólida/métodos , Terpenos/química , Compuestos Orgánicos Volátiles/análisis
2.
Metabolites ; 11(3)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673683

RESUMEN

The innovation of the new psychoactive substances (NPS) market requires the rapid identification of new substances that can be a risk to public health, in order to reduce the damage from their use. Twelve seized products suspected to contain illicit substances were analyzed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), gas chromatography coupled to mass spectrometry (GC-MS), and nuclear magnetic resonance spectroscopy (NMR). Synthetic cathinones (SCat) were found in all products, either as a single component or in mixtures. Infrared spectra of all products were consistent with the molecular structure of SCat, showing an intense absorption band at 1700-1674 cm-1, corresponding to the carbonyl stretching, a medium/strong peak at 1605-1580 cm-1, indicating stretching vibrations in the aromatic ring (C=C) and bands with relative low intensity at frequencies near 2700-2400 cm-1, corresponding to an amine salt. It was possible to identify a total of eight cathinone derivatives by GC-MS and NMR analysis: 4'-methyl-α-pyrrolidinohexanophenone (MPHP), α-pyrrolidinohexanophenone (α-PHP), 3-fluoromethcathinone (3-FMC), methedrone, methylone, buphedrone, N-ethylcathinone, and pentedrone. Among the adulterants found in these samples, caffeine was the most frequently detected substance, followed by ethylphenidate. These results highlight the prevalence of SCat in seized materials of the Portuguese market. Reference standards are usually required for confirmation, but when reference materials are not available, the combination of complementary techniques is fundamental for a rapid and an unequivocal identification of such substances.

3.
Anal Bioanal Chem ; 413(8): 2257-2273, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33575815

RESUMEN

The popularity of new psychoactive substances among drug users has become a public health concern worldwide. Among them, synthetic cannabinoids (SCs) represent the largest, most diversified and fastest growing group. Commonly known as 'synthetic marijuana' as an alternative to cannabis, these synthetic compounds are easily accessible via the internet and are sold as 'herbal incenses' under different brand names with no information about the chemical composition. In the present work, we aim to integrate gas chromatography-tandem mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) data as useful strategy for the identification and confirmation of synthetic cannabinoids present in nine seized herbal incenses. The analysis of all samples allowed the initial identification of 9 SCs, namely 5 napthoylindoles (JWH-018, JWH-073, JWH-122, JWH-210, MAM-2201), APINACA, XLR-11 and CP47,497-C8 and its enantiomer. JWH-018 was the most frequently detected synthetic compound (8 of 9 samples), while APINACA and XLR-11 were only identified in one herbal product. Other non-cannabinoid drugs, including oleamide, vitamin E and vitamin E acetate, have also been detected. Oleamide and vitamin E are two adulterants, frequently added to herbal products to mask the active ingredients or added as preservatives. However, to our knowledge, no analytical data about vitamin E acetate was reported in herbal products, being the first time that this compound is identified on this type of samples. The integration data obtained from the used analytical technologies proved to be useful, allowing the preliminary identification of the different SCs in the mixture. Furthermore, the examination of mass spectral fragment ions, as well as the results of both 1D and 2D NMR experiments, enabled the identification and confirmation of the molecular structure of SCs.


Asunto(s)
Cannabinoides/análisis , Drogas de Diseño/química , Plantas Medicinales/química , Psicotrópicos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Espectrometría de Masas en Tándem
4.
Foods ; 10(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374463

RESUMEN

Experimental studies have provided convincing evidence that food bioactive compounds (FBCs) have a positive biological impact on human health, exerting protective effects against non-communicable diseases (NCD) including cancer and cardiovascular (CVDs), metabolic, and neurodegenerative disorders (NDDs). These benefits have been associated with the presence of secondary metabolites, namely polyphenols, glucosinolates, carotenoids, terpenoids, alkaloids, saponins, vitamins, and fibres, among others, derived from their antioxidant, antiatherogenic, anti-inflammatory, antimicrobial, antithrombotic, cardioprotective, and vasodilator properties. Polyphenols as one of the most abundant classes of bioactive compounds present in plant-based foods emerge as a promising approach for the development of efficacious preventive agents against NCDs with reduced side effects. The aim of this review is to present comprehensive and deep insights into the potential of polyphenols, from their chemical structure classification and biosynthesis to preventive effects on NCDs, namely cancer, CVDs, and NDDS. The challenge of polyphenols bioavailability and bioaccessibility will be explored in addition to useful industrial and environmental applications. Advanced and emerging extraction techniques will be highlighted and the high-resolution analytical techniques used for FBCs characterization, identification, and quantification will be considered.

5.
Crit Rev Toxicol ; 50(5): 359-382, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32530350

RESUMEN

The word "cannabinoid" refers to every chemical substance, regardless of structure or origin, that joins the cannabinoid receptors of the body and brain and that have similar effects to those produced by the Cannabis plant and based on their source of production, cannabinoids can be classified into endocannabinoids, phytocannabinoids and synthetic cannabinoids. Synthetic cannabinoids represent the largest class of drugs detected through the EU Early Warning System with a total of 190 substances notified from 2008 to 2018 and about 280 have been reported worldwide to the United Nations Office on Drugs and Crime. Sprayed on natural herb mixtures with the aim to mimic the euphoria effect of cannabis and sold as "herbal smoking blends" or "herbal incense" under brand names like "Spice" or "K2", synthetic cannabinoids are available from websites for the combination with herbal materials or more recently, for the use in e-cigarettes. Currently labeled as "not for human consumption" to circumvent legislation, their legal status varies by country with many government institutions currently pushing for their control. However, due to the emergence of new substances, it requires a constant update of the list of controlled drugs. Little is known about how these substances work and their toxic effects in humans and the same product could vary not only in the amount and in the type of substance added. In the last years, synthetic cannabinoids have been associated with deaths and acute intoxications in Europe and, despite a range of new measures introduced in this area, continue to represent a challenge to current drug policy models. These synthetic substances are much more potent than natural cannabis, as well as displayed greater efficacy, acting as full agonists at the cannabinoid receptors. It is possible that, along with being highly potent, some may also have long half-lives, potentially leading to a prolonged psychoactive effect. The present work provides a review on existing literature about the development of synthetic cannabinoids as substances of abuse, current patterns of abuse and their legal status, chemical classification, and some pharmacological and toxicological properties.


Asunto(s)
Cannabinoides/toxicidad , Sistemas Electrónicos de Liberación de Nicotina , Europa (Continente) , Humanos
6.
Antioxidants (Basel) ; 9(4)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283793

RESUMEN

Fruits and vegetables are considered a good source of antioxidants, which are beneficial in protecting the human body against damage induced by free radicals and other reactive oxygen (ROS) and nitrogen (RNS) species. In this work, we aimed to evaluate the integral antioxidant activity (AOA) and determine individual polyphenols in fruits and vegetables of frequent consumption. For this purpose, an innovative and high throughput analytical approach based on original QuEChERS assisted by ultrasound extraction (USAE), instead of the manual agitation used in the classical procedure, was optimized and implemented for the isolation of polyphenols. The total phenolic content (TPC), flavonoids, anthocyanins, and betalains were evaluated using different spectrophotometric assays. In addition, free radical scavenging by methods 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) were used to estimate the AOA of the investigated fruit and vegetable extracts. Red onion, tamarillo, and beetroot were the samples with the highest AOA. The quantification and identification of free low molecular weight polyphenols from QuEChERS-USAE extracts was carried out by ultra-high-pressure liquid chromatography equipped with a photodiode array detection system (UHPLC-PDA). Catechin was the most abundant polyphenol, followed by gentisic and ferulic acids, mainly in the watercress sample. In relation to flavonols, quercetin and kaempferol were found mostly in onion samples, and in small quantities in tomato and watercress. The improved analytical approach, QuEChERS-USAE/UHPLC-PDA, offers an attractive alternative for the analysis of polyphenols from fruit and vegetable samples, providing several advantages over traditional extraction techniques, in terms of reproducibility, simplicity, low cost, analysis speed, and analytical performance.

7.
Crit Rev Toxicol ; 49(7): 549-566, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31747318

RESUMEN

Synthetic cathinones (SCat) are amphetamine-like psychostimulants that emerged onto drug markets as "legal" alternatives to illicit drugs such as ecstasy, cocaine, and amphetamines. Usually they are sold as "bath salts," "plant food," or "research chemicals," and rapidly gained popularity amongst drugs users due to their potency, low cost, and availability. In addition, internet drug sales have been replacing the old way of supplying drugs of abuse, contributing to their rapid spread. Despite the legislative efforts to control SCat, new derivatives continue to emerge on the recreational drugs market and their abuse still represents a serious public health issue. To date, about 150 SCat have been identified on the clandestine drugs market, which are one of the largest groups of new psychoactive substances (NPS) monitored by the United Nations Office on Drugs and Crime and the European Monitoring Center for Drugs and Drug Addiction. Similar to the classical stimulants, SCat affect the levels of catecholamines in the central nervous system, which results in their psychological, behavioral and toxic effects. Generally, the effects of SCat greatly differ from drug to drug and relatively little information is available about their pharmacology. The present work provides a review on the development of SCat as substances of abuse, current patterns of abuse and their legal status, chemical classification, known mechanisms of action, and their toxicological effects.


Asunto(s)
Alcaloides , Drogas de Diseño , Drogas Ilícitas , Psicotrópicos
8.
Food Chem ; 160: 266-80, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24799238

RESUMEN

The volatile metabolomic patterns from different raw materials commonly used in beer production, namely barley, corn and hop-derived products - such as hop pellets, hop essential oil from Saaz variety and tetra-hydro isomerized hop extract (tetra hop), were established using a suitable analytical procedure based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography-quadrupole mass spectrometry detection (GC-qMS). Some SPME extraction parameters were optimized. The best results, in terms of maximum signal recorded and number of isolated metabolites, were obtained with a 50/30 µm DVB/CAR/PDMS coating fiber at 40 °C for 30 min. A set of 152 volatile metabolites comprising ketones (27), sesquiterpenes (26), monoterpenes (19), aliphatic esters (19), higher alcohols (15), aldehydes (11), furan compounds (11), aliphatic fatty acids (9), aliphatic hydrocarbons (8), sulphur compounds (5) and nitrogen compounds (2) were positively identified. Each raw material showed a specific volatile metabolomic profile. Monoterpenes in hop essential oil and corn, sesquiterpenes in hop pellets, ketones in tetra hop and aldehydes and sulphur compounds in barley were the predominant chemical families in the targeted beer raw materials. ß-Myrcene was the most dominant volatile metabolite in hop essential oil, hop pellets and corn samples while, in barley, the predominant volatile metabolites were dimethyl sulphide and 3-methylbutanal and, in tetra hop, 6-methyl-2-pentanone and 4-methyl-2-pentanone. Principal component analysis (PCA) showed natural sample grouping among beer raw materials.


Asunto(s)
Cerveza/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Metabolómica/métodos , Microextracción en Fase Sólida/métodos , Análisis Multivariante , Compuestos Orgánicos
9.
J Chromatogr A ; 1304: 42-51, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23871283

RESUMEN

In this work a highly selective and sensitive analytical procedure based on semi-automatic microextraction by packed sorbents (MEPS) technique, using a new digitally controlled syringe (eVol(®)) combined with ultra-high pressure liquid chromatography (UHPLC), is proposed to determine the prenylated chalcone derived from the hop (Humulus lupulus L.), xanthohumol (XN), and its isomeric flavonone isoxanthohumol (IXN) in beers. Extraction and UHPLC parameters were accurately optimized to achieve the highest recoveries and to enhance the analytical characteristics of the method. Important parameters affecting MEPS performance, namely the type of sorbent material (C2, C8, C18, SIL, and M1), elution solvent system, number of extraction cycles (extract-discard), sample volume, elution volume, and sample pH, were evaluated. The optimal experimental conditions involves the loading of 500µL of sample through a C18 sorbent in a MEPS syringe placed in the semi-automatic eVol(®) syringe followed by elution using 250µL of acetonitrile (ACN) in a 10 extractions cycle (about 5min for the entire sample preparation step). The obtained extract is directly analyzed in the UHPLC system using a binary mobile phase composed of aqueous 0.1% formic acid (eluent A) and ACN (eluent B) in the gradient elution mode (10min total analysis). Under optimized conditions good results were obtained in terms of linearity within the established concentration range with correlation coefficients (R) values higher than 0.986, with a residual deviation for each calibration point below 12%. The limit of detection (LOD) and limit of quantification (LOQ) obtained were 0.4ngmL(-1) and 1.0ngmL(-1) for IXN, and 0.9ngmL(-1) and 3.0ngmL(-1) for XN, respectively. Precision was lower than 4.6% for IXN and 8.4% for XN. Typical recoveries ranged between 67.1% and 99.3% for IXN and between 74.2% and 99.9% for XN, with relative standard deviations %RSD no larger than 8%. The applicability of the proposed analytical procedure in commercial beers, revealed the presence of both target prenylchalcones in all samples being IXN the most abundant with concentration of between 0.126 and 0.200µgmL(-1).


Asunto(s)
Cerveza/análisis , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Propiofenonas/análisis , Microextracción en Fase Sólida/métodos , Xantonas/análisis , Chalcona/análisis , Cromatografía Líquida de Alta Presión/economía , Humulus/química , Límite de Detección , Microextracción en Fase Sólida/economía , Factores de Tiempo
10.
Anal Chim Acta ; 739: 89-98, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22819054

RESUMEN

A new approach based on microextraction by packed sorbent (MEPS) and reversed-phase high-throughput ultra high pressure liquid chromatography (UHPLC) method that uses a gradient elution and diode array detection to quantitate three biologically active flavonols in wines, myricetin, quercetin, and kaempferol, is described. In addition to performing routine experiments to establish the validity of the assay to internationally accepted criteria (selectivity, linearity, sensitivity, precision, accuracy), experiments are included to assess the effect of the important experimental parameters such as the type of sorbent material (C2, C8, C18, SIL, and C8/SCX), number of extraction cycles (extract-discard), elution volume, sample volume, and ethanol content, on the MEPS performance. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (250µL) in five extraction cycle and in a short time period (about 5min for the entire sample preparation step). Under optimized conditions, excellent linearity (R(values)(2)>0.9963), limits of detection of 0.006µgmL(-1) (quercetin) to 0.013µgmL(-1) (myricetin) and precision within 0.5-3.1% were observed for the target flavonols. The average recoveries of myricetin, quercetin and kaempferol for real samples were 83.0-97.7% with relative standard deviation (RSD, %) lower than 1.6%. The results obtained showed that the most abundant flavonol in the analyzed samples was myricetin (5.8±3.7µgmL(-1)). Quercetin (0.97±0.41µgmL(-1)) and kaempferol (0.66±0.24µgmL(-1)) were found in a lower concentration. The optimized MEPS(C8) method was compared with a reverse-phase solid-phase extraction (SPE) procedure using as sorbent a macroporous copolymer made from a balanced ratio of two monomers, the lipophilic divinylbenzene and the hydrophilic N-vinylpyrrolidone (Oasis HLB) were used as reference. MEPS(C8) approach offers an attractive alternative for analysis of flavonols in wines, providing a number of advantages including highest extraction efficiency (from 85.9±0.9% to 92.1±0.5%) in the shortest extraction time with low solvent consumption, fast sample throughput, more environmentally friendly and easy to perform.


Asunto(s)
Cromatografía de Fase Inversa/instrumentación , Flavonoles/análisis , Microextracción en Fase Sólida/instrumentación , Vino/análisis , Cromatografía Líquida de Alta Presión/instrumentación , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Flavonoides/análisis , Humanos , Quempferoles/análisis , Límite de Detección , Polivinilos/química , Quercetina/análisis , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Microextracción en Fase Sólida/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...