Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Elife ; 112022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35377314

RESUMEN

Adoptive cell transfer (ACT) is a promising approach to cancer immunotherapy, but its efficiency fundamentally depends on the extent of tumor-specific T cell enrichment within the graft. This can be estimated via activation with identifiable neoantigens, tumor-associated antigens (TAAs), or living or lysed tumor cells, but these approaches remain laborious, time-consuming, and functionally limited, hampering clinical development of ACT. Here, we demonstrate that homology cluster analysis of T cell receptor (TCR) repertoires efficiently identifies tumor-reactive TCRs allowing to: (1) detect their presence within the pool of tumor-infiltrating lymphocytes (TILs); (2) optimize TIL culturing conditions, with IL-2low/IL-21/anti-PD-1 combination showing increased efficiency; (3) investigate surface marker-based enrichment for tumor-targeting T cells in freshly isolated TILs (enrichment confirmed for CD4+ and CD8+ PD-1+/CD39+ subsets), or re-stimulated TILs (informs on enrichment in 4-1BB-sorted cells). We believe that this approach to the rapid assessment of tumor-specific TCR enrichment should accelerate T cell therapy development.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Antígenos de Neoplasias/metabolismo , Humanos , Linfocitos Infiltrantes de Tumor , Neoplasias/metabolismo , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/metabolismo
3.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35409216

RESUMEN

In vitro models of traumatic brain injury (TBI) help to elucidate the pathological mechanisms responsible for cell dysfunction and death. To simulate in vitro the mechanical brain trauma, primary neuroglial cultures were scratched during different periods of network formation. Fluorescence microscopy was used to measure changes in intracellular free Ca2+ concentration ([Ca2+]i) and mitochondrial potential (ΔΨm) a few minutes later and on days 3 and 7 after scratching. An increase in [Ca2+]i and a decrease in ΔΨm were observed ~10 s after the injury in cells located no further than 150-200 µm from the scratch border. Ca2+ entry into cells during mechanical damage of the primary neuroglial culture occurred predominantly through the NMDA-type glutamate ionotropic channels. MK801, an inhibitor of this type of glutamate receptor, prevented an acute increase in [Ca2+]i in 99% of neurons. Pathological changes in calcium homeostasis persisted in the primary neuroglial culture for one week after injury. Active cell migration in the scratch area occurred on day 11 after neurotrauma and was accompanied by a decrease in the ratio of live to dead cells in the areas adjacent to the injury. Immunohistochemical staining of glial fibrillary acidic protein and ß-III tubulin showed that neuronal cells migrated to the injured area earlier than glial cells, but their repair potential was insufficient for survival. Mitochondrial Ca2+ overload and a drop in ΔΨm may cause delayed neuronal death and thus play a key role in the development of the post-traumatic syndrome. Preventing prolonged ΔΨm depolarization may be a promising therapeutic approach to improve neuronal survival after traumatic brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Calcio , Lesiones Traumáticas del Encéfalo/metabolismo , Calcio/metabolismo , Homeostasis/fisiología , Humanos , Mitocondrias/metabolismo , Neuroglía/metabolismo
4.
Med Image Anal ; 71: 102054, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33932751

RESUMEN

The current COVID-19 pandemic overloads healthcare systems, including radiology departments. Though several deep learning approaches were developed to assist in CT analysis, nobody considered study triage directly as a computer science problem. We describe two basic setups: Identification of COVID-19 to prioritize studies of potentially infected patients to isolate them as early as possible; Severity quantification to highlight patients with severe COVID-19, thus direct them to a hospital or provide emergency medical care. We formalize these tasks as binary classification and estimation of affected lung percentage. Though similar problems were well-studied separately, we show that existing methods could provide reasonable quality only for one of these setups. We employ a multitask approach to consolidate both triage approaches and propose a convolutional neural network to leverage all available labels within a single model. In contrast with the related multitask approaches, we show the benefit from applying the classification layers to the most spatially detailed feature map at the upper part of U-Net instead of the less detailed latent representation at the bottom. We train our model on approximately 1500 publicly available CT studies and test it on the holdout dataset that consists of 123 chest CT studies of patients drawn from the same healthcare system, specifically 32 COVID-19 and 30 bacterial pneumonia cases, 30 cases with cancerous nodules, and 31 healthy controls. The proposed multitask model outperforms the other approaches and achieves ROC AUC scores of 0.87±0.01 vs. bacterial pneumonia, 0.93±0.01 vs. cancerous nodules, and 0.97±0.01 vs. healthy controls in Identification of COVID-19, and achieves 0.97±0.01 Spearman Correlation in Severity quantification. We have released our code and shared the annotated lesions masks for 32 CT images of patients with COVID-19 from the test dataset.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Triaje , COVID-19/diagnóstico por imagen , Humanos , Pandemias , SARS-CoV-2 , Tomografía Computarizada por Rayos X
5.
Sci Rep ; 10(1): 12298, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32704145

RESUMEN

Information regarding plant damage by insects in the past is essential to explore impacts of climate change on herbivory. We asked whether insect herbivory measured from herbarium specimens reflects the levels of herbivory occurring in nature at the time of herbarium sampling. We compared herbivory measurements between herbarium specimens collected by botany students and ecological samples collected simultaneously by the authors by a method that minimized unconscious biases, and asked herbarium curators to select one of two plant specimens, which differed in leaf damage, for their collections. Both collectors and curators generally preferred specimens with lesser leaf damage, but the strength of this preference varied among persons. In addition, the differences in measured leaf damage between ecological samples and herbarium specimens varied among plant species and increased with the increase in field herbivory. Consequently, leaf damage in herbarium specimens did not correlate with the actual level of herbivory. We conclude that studies of herbarium specimens produce biased information on past levels of herbivory, because leaf damage measured from herbarium specimens not only underestimates field herbivory, but it is not proportional to the level of damage occurring in nature due to multiple factors that cannot be controlled in data analysis.


Asunto(s)
Herbivoria , Insectos , Plantas , Animales , Cambio Climático , Ecosistema , Bosques , Hojas de la Planta , Madera
6.
Nat Commun ; 7: 10246, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26776466

RESUMEN

The magnetic moment µ of a bound electron, generally expressed by the g-factor µ=-g µB s h(-1) with µB the Bohr magneton and s the electron's spin, can be calculated by bound-state quantum electrodynamics (BS-QED) to very high precision. The recent ultra-precise experiment on hydrogen-like silicon determined this value to eleven significant digits, and thus allowed to rigorously probe the validity of BS-QED. Yet, the investigation of one of the most interesting contribution to the g-factor, the relativistic interaction between electron and nucleus, is limited by our knowledge of BS-QED effects. By comparing the g-factors of two isotopes, it is possible to cancel most of these contributions and sensitively probe nuclear effects. Here, we present calculations and experiments on the isotope dependence of the Zeeman effect in lithium-like calcium ions. The good agreement between the theoretical predicted recoil contribution and the high-precision g-factor measurements paves the way for a new generation of BS-QED tests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...